Metamath Proof Explorer


Theorem negnegs

Description: A surreal is equal to the negative of its negative. Theorem 4(ii) of Conway p. 17. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negnegs ( 𝐴 No → ( -us ‘ ( -us𝐴 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 negscl ( 𝐴 No → ( -us𝐴 ) ∈ No )
2 1 negsidd ( 𝐴 No → ( ( -us𝐴 ) +s ( -us ‘ ( -us𝐴 ) ) ) = 0s )
3 1 negscld ( 𝐴 No → ( -us ‘ ( -us𝐴 ) ) ∈ No )
4 3 1 addscomd ( 𝐴 No → ( ( -us ‘ ( -us𝐴 ) ) +s ( -us𝐴 ) ) = ( ( -us𝐴 ) +s ( -us ‘ ( -us𝐴 ) ) ) )
5 negsid ( 𝐴 No → ( 𝐴 +s ( -us𝐴 ) ) = 0s )
6 2 4 5 3eqtr4d ( 𝐴 No → ( ( -us ‘ ( -us𝐴 ) ) +s ( -us𝐴 ) ) = ( 𝐴 +s ( -us𝐴 ) ) )
7 id ( 𝐴 No 𝐴 No )
8 3 7 1 addscan2d ( 𝐴 No → ( ( ( -us ‘ ( -us𝐴 ) ) +s ( -us𝐴 ) ) = ( 𝐴 +s ( -us𝐴 ) ) ↔ ( -us ‘ ( -us𝐴 ) ) = 𝐴 ) )
9 6 8 mpbid ( 𝐴 No → ( -us ‘ ( -us𝐴 ) ) = 𝐴 )