Metamath Proof Explorer


Theorem negpilt0

Description: Negative _pi is negative. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion negpilt0 - π < 0

Proof

Step Hyp Ref Expression
1 pipos 0 < π
2 pire π ∈ ℝ
3 lt0neg2 ( π ∈ ℝ → ( 0 < π ↔ - π < 0 ) )
4 2 3 ax-mp ( 0 < π ↔ - π < 0 )
5 1 4 mpbi - π < 0