Metamath Proof Explorer


Theorem negpitopissre

Description: The interval ( -upi (,] pi ) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Assertion negpitopissre ( - π (,] π ) ⊆ ℝ

Proof

Step Hyp Ref Expression
1 pire π ∈ ℝ
2 1 renegcli - π ∈ ℝ
3 2 rexri - π ∈ ℝ*
4 iocssre ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → ( - π (,] π ) ⊆ ℝ )
5 3 1 4 mp2an ( - π (,] π ) ⊆ ℝ