Description: The negative of a real is real. (Contributed by NM, 11-Aug-1999) (Revised by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negreb | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl | ⊢ ( - 𝐴 ∈ ℝ → - - 𝐴 ∈ ℝ ) | |
| 2 | negneg | ⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝐴 ∈ ℂ → ( - - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |
| 4 | 1 3 | imbitrid | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) ) |
| 5 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 6 | 4 5 | impbid1 | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |