Metamath Proof Explorer
		
		
		
		Description:  The negative of a real is real.  (Contributed by Mario Carneiro, 28-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | negidd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
					
						|  |  | negrebd.2 | ⊢ ( 𝜑  →  - 𝐴  ∈  ℝ ) | 
				
					|  | Assertion | negrebd | ⊢  ( 𝜑  →  𝐴  ∈  ℝ ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negidd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | negrebd.2 | ⊢ ( 𝜑  →  - 𝐴  ∈  ℝ ) | 
						
							| 3 |  | negreb | ⊢ ( 𝐴  ∈  ℂ  →  ( - 𝐴  ∈  ℝ  ↔  𝐴  ∈  ℝ ) ) | 
						
							| 4 | 1 3 | syl | ⊢ ( 𝜑  →  ( - 𝐴  ∈  ℝ  ↔  𝐴  ∈  ℝ ) ) | 
						
							| 5 | 2 4 | mpbid | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) |