Metamath Proof Explorer


Theorem negrebd

Description: The negative of a real is real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses negidd.1 ( 𝜑𝐴 ∈ ℂ )
negrebd.2 ( 𝜑 → - 𝐴 ∈ ℝ )
Assertion negrebd ( 𝜑𝐴 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 negidd.1 ( 𝜑𝐴 ∈ ℂ )
2 negrebd.2 ( 𝜑 → - 𝐴 ∈ ℝ )
3 negreb ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) )
4 1 3 syl ( 𝜑 → ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) )
5 2 4 mpbid ( 𝜑𝐴 ∈ ℝ )