Metamath Proof Explorer
Description: The negative of a real is real. (Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
negidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
|
negrebd.2 |
⊢ ( 𝜑 → - 𝐴 ∈ ℝ ) |
|
Assertion |
negrebd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
negidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
negrebd.2 |
⊢ ( 𝜑 → - 𝐴 ∈ ℝ ) |
3 |
|
negreb |
⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |
5 |
2 4
|
mpbid |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |