Description: The negative of a real is real. (Contributed by NM, 11-Aug-1999)
Ref | Expression | ||
---|---|---|---|
Hypothesis | negidi.1 | ⊢ 𝐴 ∈ ℂ | |
Assertion | negrebi | ⊢ ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidi.1 | ⊢ 𝐴 ∈ ℂ | |
2 | negreb | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) | |
3 | 1 2 | ax-mp | ⊢ ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) |