Metamath Proof Explorer


Theorem negrebi

Description: The negative of a real is real. (Contributed by NM, 11-Aug-1999)

Ref Expression
Hypothesis negidi.1 𝐴 ∈ ℂ
Assertion negrebi ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 negidi.1 𝐴 ∈ ℂ
2 negreb ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) )
3 1 2 ax-mp ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ )