| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( ( -us ‘ 𝐴 ) = ( -us ‘ 𝐵 ) → ( -us ‘ ( -us ‘ 𝐴 ) ) = ( -us ‘ ( -us ‘ 𝐵 ) ) ) |
| 2 |
|
negnegs |
⊢ ( 𝐴 ∈ No → ( -us ‘ ( -us ‘ 𝐴 ) ) = 𝐴 ) |
| 3 |
|
negnegs |
⊢ ( 𝐵 ∈ No → ( -us ‘ ( -us ‘ 𝐵 ) ) = 𝐵 ) |
| 4 |
2 3
|
eqeqan12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( -us ‘ ( -us ‘ 𝐴 ) ) = ( -us ‘ ( -us ‘ 𝐵 ) ) ↔ 𝐴 = 𝐵 ) ) |
| 5 |
1 4
|
imbitrid |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( -us ‘ 𝐴 ) = ( -us ‘ 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝐴 = 𝐵 → ( -us ‘ 𝐴 ) = ( -us ‘ 𝐵 ) ) |
| 7 |
5 6
|
impbid1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( -us ‘ 𝐴 ) = ( -us ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |