Metamath Proof Explorer


Theorem negs11

Description: Surreal negation is one-to-one. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negs11 ( ( 𝐴 No 𝐵 No ) → ( ( -us𝐴 ) = ( -us𝐵 ) ↔ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( ( -us𝐴 ) = ( -us𝐵 ) → ( -us ‘ ( -us𝐴 ) ) = ( -us ‘ ( -us𝐵 ) ) )
2 negnegs ( 𝐴 No → ( -us ‘ ( -us𝐴 ) ) = 𝐴 )
3 negnegs ( 𝐵 No → ( -us ‘ ( -us𝐵 ) ) = 𝐵 )
4 2 3 eqeqan12d ( ( 𝐴 No 𝐵 No ) → ( ( -us ‘ ( -us𝐴 ) ) = ( -us ‘ ( -us𝐵 ) ) ↔ 𝐴 = 𝐵 ) )
5 1 4 imbitrid ( ( 𝐴 No 𝐵 No ) → ( ( -us𝐴 ) = ( -us𝐵 ) → 𝐴 = 𝐵 ) )
6 fveq2 ( 𝐴 = 𝐵 → ( -us𝐴 ) = ( -us𝐵 ) )
7 5 6 impbid1 ( ( 𝐴 No 𝐵 No ) → ( ( -us𝐴 ) = ( -us𝐵 ) ↔ 𝐴 = 𝐵 ) )