| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1sno |
⊢ 1s ∈ No |
| 2 |
|
negsval |
⊢ ( 1s ∈ No → ( -us ‘ 1s ) = ( ( -us “ ( R ‘ 1s ) ) |s ( -us “ ( L ‘ 1s ) ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( -us ‘ 1s ) = ( ( -us “ ( R ‘ 1s ) ) |s ( -us “ ( L ‘ 1s ) ) ) |
| 4 |
|
right1s |
⊢ ( R ‘ 1s ) = ∅ |
| 5 |
4
|
imaeq2i |
⊢ ( -us “ ( R ‘ 1s ) ) = ( -us “ ∅ ) |
| 6 |
|
ima0 |
⊢ ( -us “ ∅ ) = ∅ |
| 7 |
5 6
|
eqtri |
⊢ ( -us “ ( R ‘ 1s ) ) = ∅ |
| 8 |
|
left1s |
⊢ ( L ‘ 1s ) = { 0s } |
| 9 |
8
|
imaeq2i |
⊢ ( -us “ ( L ‘ 1s ) ) = ( -us “ { 0s } ) |
| 10 |
|
negsfn |
⊢ -us Fn No |
| 11 |
|
0sno |
⊢ 0s ∈ No |
| 12 |
|
fnimapr |
⊢ ( ( -us Fn No ∧ 0s ∈ No ∧ 0s ∈ No ) → ( -us “ { 0s , 0s } ) = { ( -us ‘ 0s ) , ( -us ‘ 0s ) } ) |
| 13 |
10 11 11 12
|
mp3an |
⊢ ( -us “ { 0s , 0s } ) = { ( -us ‘ 0s ) , ( -us ‘ 0s ) } |
| 14 |
|
negs0s |
⊢ ( -us ‘ 0s ) = 0s |
| 15 |
14 14
|
preq12i |
⊢ { ( -us ‘ 0s ) , ( -us ‘ 0s ) } = { 0s , 0s } |
| 16 |
13 15
|
eqtri |
⊢ ( -us “ { 0s , 0s } ) = { 0s , 0s } |
| 17 |
|
dfsn2 |
⊢ { 0s } = { 0s , 0s } |
| 18 |
17
|
imaeq2i |
⊢ ( -us “ { 0s } ) = ( -us “ { 0s , 0s } ) |
| 19 |
16 18 17
|
3eqtr4i |
⊢ ( -us “ { 0s } ) = { 0s } |
| 20 |
9 19
|
eqtri |
⊢ ( -us “ ( L ‘ 1s ) ) = { 0s } |
| 21 |
7 20
|
oveq12i |
⊢ ( ( -us “ ( R ‘ 1s ) ) |s ( -us “ ( L ‘ 1s ) ) ) = ( ∅ |s { 0s } ) |
| 22 |
3 21
|
eqtri |
⊢ ( -us ‘ 1s ) = ( ∅ |s { 0s } ) |