Metamath Proof Explorer


Theorem negs1s

Description: An expression for negative surreal one. (Contributed by Scott Fenton, 24-Jul-2025)

Ref Expression
Assertion negs1s ( -us ‘ 1s ) = ( ∅ |s { 0s } )

Proof

Step Hyp Ref Expression
1 1sno 1s No
2 negsval ( 1s No → ( -us ‘ 1s ) = ( ( -us “ ( R ‘ 1s ) ) |s ( -us “ ( L ‘ 1s ) ) ) )
3 1 2 ax-mp ( -us ‘ 1s ) = ( ( -us “ ( R ‘ 1s ) ) |s ( -us “ ( L ‘ 1s ) ) )
4 right1s ( R ‘ 1s ) = ∅
5 4 imaeq2i ( -us “ ( R ‘ 1s ) ) = ( -us “ ∅ )
6 ima0 ( -us “ ∅ ) = ∅
7 5 6 eqtri ( -us “ ( R ‘ 1s ) ) = ∅
8 left1s ( L ‘ 1s ) = { 0s }
9 8 imaeq2i ( -us “ ( L ‘ 1s ) ) = ( -us “ { 0s } )
10 negsfn -us Fn No
11 0sno 0s No
12 fnimapr ( ( -us Fn No ∧ 0s No ∧ 0s No ) → ( -us “ { 0s , 0s } ) = { ( -us ‘ 0s ) , ( -us ‘ 0s ) } )
13 10 11 11 12 mp3an ( -us “ { 0s , 0s } ) = { ( -us ‘ 0s ) , ( -us ‘ 0s ) }
14 negs0s ( -us ‘ 0s ) = 0s
15 14 14 preq12i { ( -us ‘ 0s ) , ( -us ‘ 0s ) } = { 0s , 0s }
16 13 15 eqtri ( -us “ { 0s , 0s } ) = { 0s , 0s }
17 dfsn2 { 0s } = { 0s , 0s }
18 17 imaeq2i ( -us “ { 0s } ) = ( -us “ { 0s , 0s } )
19 16 18 17 3eqtr4i ( -us “ { 0s } ) = { 0s }
20 9 19 eqtri ( -us “ ( L ‘ 1s ) ) = { 0s }
21 7 20 oveq12i ( ( -us “ ( R ‘ 1s ) ) |s ( -us “ ( L ‘ 1s ) ) ) = ( ∅ |s { 0s } )
22 3 21 eqtri ( -us ‘ 1s ) = ( ∅ |s { 0s } )