Metamath Proof Explorer


Theorem negsbday

Description: Negation of a surreal number preserves birthday. (Contributed by Scott Fenton, 8-Mar-2025)

Ref Expression
Assertion negsbday ( 𝐴 No → ( bday ‘ ( -us𝐴 ) ) = ( bday 𝐴 ) )

Proof

Step Hyp Ref Expression
1 negsbdaylem ( 𝐴 No → ( bday ‘ ( -us𝐴 ) ) ⊆ ( bday 𝐴 ) )
2 negnegs ( 𝐴 No → ( -us ‘ ( -us𝐴 ) ) = 𝐴 )
3 2 fveq2d ( 𝐴 No → ( bday ‘ ( -us ‘ ( -us𝐴 ) ) ) = ( bday 𝐴 ) )
4 negscl ( 𝐴 No → ( -us𝐴 ) ∈ No )
5 negsbdaylem ( ( -us𝐴 ) ∈ No → ( bday ‘ ( -us ‘ ( -us𝐴 ) ) ) ⊆ ( bday ‘ ( -us𝐴 ) ) )
6 4 5 syl ( 𝐴 No → ( bday ‘ ( -us ‘ ( -us𝐴 ) ) ) ⊆ ( bday ‘ ( -us𝐴 ) ) )
7 3 6 eqsstrrd ( 𝐴 No → ( bday 𝐴 ) ⊆ ( bday ‘ ( -us𝐴 ) ) )
8 1 7 eqssd ( 𝐴 No → ( bday ‘ ( -us𝐴 ) ) = ( bday 𝐴 ) )