Metamath Proof Explorer


Theorem negsbdaylem

Description: Lemma for negsbday . Bound the birthday of the negative of a surreal number above. (Contributed by Scott Fenton, 8-Mar-2025)

Ref Expression
Assertion negsbdaylem ( 𝐴 No → ( bday ‘ ( -us𝐴 ) ) ⊆ ( bday 𝐴 ) )

Proof

Step Hyp Ref Expression
1 2fveq3 ( 𝑥 = 𝑥𝑂 → ( bday ‘ ( -us𝑥 ) ) = ( bday ‘ ( -us𝑥𝑂 ) ) )
2 fveq2 ( 𝑥 = 𝑥𝑂 → ( bday 𝑥 ) = ( bday 𝑥𝑂 ) )
3 1 2 sseq12d ( 𝑥 = 𝑥𝑂 → ( ( bday ‘ ( -us𝑥 ) ) ⊆ ( bday 𝑥 ) ↔ ( bday ‘ ( -us𝑥𝑂 ) ) ⊆ ( bday 𝑥𝑂 ) ) )
4 2fveq3 ( 𝑥 = 𝐴 → ( bday ‘ ( -us𝑥 ) ) = ( bday ‘ ( -us𝐴 ) ) )
5 fveq2 ( 𝑥 = 𝐴 → ( bday 𝑥 ) = ( bday 𝐴 ) )
6 4 5 sseq12d ( 𝑥 = 𝐴 → ( ( bday ‘ ( -us𝑥 ) ) ⊆ ( bday 𝑥 ) ↔ ( bday ‘ ( -us𝐴 ) ) ⊆ ( bday 𝐴 ) ) )
7 negsval ( 𝑥 No → ( -us𝑥 ) = ( ( -us “ ( R ‘ 𝑥 ) ) |s ( -us “ ( L ‘ 𝑥 ) ) ) )
8 7 fveq2d ( 𝑥 No → ( bday ‘ ( -us𝑥 ) ) = ( bday ‘ ( ( -us “ ( R ‘ 𝑥 ) ) |s ( -us “ ( L ‘ 𝑥 ) ) ) ) )
9 8 adantr ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( -us𝑥𝑂 ) ) ⊆ ( bday 𝑥𝑂 ) ) → ( bday ‘ ( -us𝑥 ) ) = ( bday ‘ ( ( -us “ ( R ‘ 𝑥 ) ) |s ( -us “ ( L ‘ 𝑥 ) ) ) ) )
10 negscut2 ( 𝑥 No → ( -us “ ( R ‘ 𝑥 ) ) <<s ( -us “ ( L ‘ 𝑥 ) ) )
11 lrold ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) = ( O ‘ ( bday 𝑥 ) )
12 uncom ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) = ( ( R ‘ 𝑥 ) ∪ ( L ‘ 𝑥 ) )
13 11 12 eqtr3i ( O ‘ ( bday 𝑥 ) ) = ( ( R ‘ 𝑥 ) ∪ ( L ‘ 𝑥 ) )
14 13 imaeq2i ( -us “ ( O ‘ ( bday 𝑥 ) ) ) = ( -us “ ( ( R ‘ 𝑥 ) ∪ ( L ‘ 𝑥 ) ) )
15 imaundi ( -us “ ( ( R ‘ 𝑥 ) ∪ ( L ‘ 𝑥 ) ) ) = ( ( -us “ ( R ‘ 𝑥 ) ) ∪ ( -us “ ( L ‘ 𝑥 ) ) )
16 14 15 eqtri ( -us “ ( O ‘ ( bday 𝑥 ) ) ) = ( ( -us “ ( R ‘ 𝑥 ) ) ∪ ( -us “ ( L ‘ 𝑥 ) ) )
17 16 imaeq2i ( bday “ ( -us “ ( O ‘ ( bday 𝑥 ) ) ) ) = ( bday “ ( ( -us “ ( R ‘ 𝑥 ) ) ∪ ( -us “ ( L ‘ 𝑥 ) ) ) )
18 11 raleqi ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( -us𝑥𝑂 ) ) ⊆ ( bday 𝑥𝑂 ) ↔ ∀ 𝑥𝑂 ∈ ( O ‘ ( bday 𝑥 ) ) ( bday ‘ ( -us𝑥𝑂 ) ) ⊆ ( bday 𝑥𝑂 ) )
19 oldbdayim ( 𝑥𝑂 ∈ ( O ‘ ( bday 𝑥 ) ) → ( bday 𝑥𝑂 ) ∈ ( bday 𝑥 ) )
20 19 adantl ( ( 𝑥 No 𝑥𝑂 ∈ ( O ‘ ( bday 𝑥 ) ) ) → ( bday 𝑥𝑂 ) ∈ ( bday 𝑥 ) )
21 bdayelon ( bday ‘ ( -us𝑥𝑂 ) ) ∈ On
22 bdayelon ( bday 𝑥 ) ∈ On
23 ontr2 ( ( ( bday ‘ ( -us𝑥𝑂 ) ) ∈ On ∧ ( bday 𝑥 ) ∈ On ) → ( ( ( bday ‘ ( -us𝑥𝑂 ) ) ⊆ ( bday 𝑥𝑂 ) ∧ ( bday 𝑥𝑂 ) ∈ ( bday 𝑥 ) ) → ( bday ‘ ( -us𝑥𝑂 ) ) ∈ ( bday 𝑥 ) ) )
24 21 22 23 mp2an ( ( ( bday ‘ ( -us𝑥𝑂 ) ) ⊆ ( bday 𝑥𝑂 ) ∧ ( bday 𝑥𝑂 ) ∈ ( bday 𝑥 ) ) → ( bday ‘ ( -us𝑥𝑂 ) ) ∈ ( bday 𝑥 ) )
25 24 a1i ( ( 𝑥 No 𝑥𝑂 ∈ ( O ‘ ( bday 𝑥 ) ) ) → ( ( ( bday ‘ ( -us𝑥𝑂 ) ) ⊆ ( bday 𝑥𝑂 ) ∧ ( bday 𝑥𝑂 ) ∈ ( bday 𝑥 ) ) → ( bday ‘ ( -us𝑥𝑂 ) ) ∈ ( bday 𝑥 ) ) )
26 20 25 mpan2d ( ( 𝑥 No 𝑥𝑂 ∈ ( O ‘ ( bday 𝑥 ) ) ) → ( ( bday ‘ ( -us𝑥𝑂 ) ) ⊆ ( bday 𝑥𝑂 ) → ( bday ‘ ( -us𝑥𝑂 ) ) ∈ ( bday 𝑥 ) ) )
27 26 ralimdva ( 𝑥 No → ( ∀ 𝑥𝑂 ∈ ( O ‘ ( bday 𝑥 ) ) ( bday ‘ ( -us𝑥𝑂 ) ) ⊆ ( bday 𝑥𝑂 ) → ∀ 𝑥𝑂 ∈ ( O ‘ ( bday 𝑥 ) ) ( bday ‘ ( -us𝑥𝑂 ) ) ∈ ( bday 𝑥 ) ) )
28 27 imp ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( O ‘ ( bday 𝑥 ) ) ( bday ‘ ( -us𝑥𝑂 ) ) ⊆ ( bday 𝑥𝑂 ) ) → ∀ 𝑥𝑂 ∈ ( O ‘ ( bday 𝑥 ) ) ( bday ‘ ( -us𝑥𝑂 ) ) ∈ ( bday 𝑥 ) )
29 bdayfun Fun bday
30 imassrn ( -us “ ( O ‘ ( bday 𝑥 ) ) ) ⊆ ran -us
31 bdaydm dom bday = No
32 negsfo -us : No onto No
33 forn ( -us : No onto No → ran -us = No )
34 32 33 ax-mp ran -us = No
35 31 34 eqtr4i dom bday = ran -us
36 30 35 sseqtrri ( -us “ ( O ‘ ( bday 𝑥 ) ) ) ⊆ dom bday
37 funimass4 ( ( Fun bday ∧ ( -us “ ( O ‘ ( bday 𝑥 ) ) ) ⊆ dom bday ) → ( ( bday “ ( -us “ ( O ‘ ( bday 𝑥 ) ) ) ) ⊆ ( bday 𝑥 ) ↔ ∀ 𝑦 ∈ ( -us “ ( O ‘ ( bday 𝑥 ) ) ) ( bday 𝑦 ) ∈ ( bday 𝑥 ) ) )
38 29 36 37 mp2an ( ( bday “ ( -us “ ( O ‘ ( bday 𝑥 ) ) ) ) ⊆ ( bday 𝑥 ) ↔ ∀ 𝑦 ∈ ( -us “ ( O ‘ ( bday 𝑥 ) ) ) ( bday 𝑦 ) ∈ ( bday 𝑥 ) )
39 negsfn -us Fn No
40 oldssno ( O ‘ ( bday 𝑥 ) ) ⊆ No
41 fveq2 ( 𝑦 = ( -us𝑥𝑂 ) → ( bday 𝑦 ) = ( bday ‘ ( -us𝑥𝑂 ) ) )
42 41 eleq1d ( 𝑦 = ( -us𝑥𝑂 ) → ( ( bday 𝑦 ) ∈ ( bday 𝑥 ) ↔ ( bday ‘ ( -us𝑥𝑂 ) ) ∈ ( bday 𝑥 ) ) )
43 42 imaeqsalv ( ( -us Fn No ∧ ( O ‘ ( bday 𝑥 ) ) ⊆ No ) → ( ∀ 𝑦 ∈ ( -us “ ( O ‘ ( bday 𝑥 ) ) ) ( bday 𝑦 ) ∈ ( bday 𝑥 ) ↔ ∀ 𝑥𝑂 ∈ ( O ‘ ( bday 𝑥 ) ) ( bday ‘ ( -us𝑥𝑂 ) ) ∈ ( bday 𝑥 ) ) )
44 39 40 43 mp2an ( ∀ 𝑦 ∈ ( -us “ ( O ‘ ( bday 𝑥 ) ) ) ( bday 𝑦 ) ∈ ( bday 𝑥 ) ↔ ∀ 𝑥𝑂 ∈ ( O ‘ ( bday 𝑥 ) ) ( bday ‘ ( -us𝑥𝑂 ) ) ∈ ( bday 𝑥 ) )
45 38 44 bitri ( ( bday “ ( -us “ ( O ‘ ( bday 𝑥 ) ) ) ) ⊆ ( bday 𝑥 ) ↔ ∀ 𝑥𝑂 ∈ ( O ‘ ( bday 𝑥 ) ) ( bday ‘ ( -us𝑥𝑂 ) ) ∈ ( bday 𝑥 ) )
46 28 45 sylibr ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( O ‘ ( bday 𝑥 ) ) ( bday ‘ ( -us𝑥𝑂 ) ) ⊆ ( bday 𝑥𝑂 ) ) → ( bday “ ( -us “ ( O ‘ ( bday 𝑥 ) ) ) ) ⊆ ( bday 𝑥 ) )
47 18 46 sylan2b ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( -us𝑥𝑂 ) ) ⊆ ( bday 𝑥𝑂 ) ) → ( bday “ ( -us “ ( O ‘ ( bday 𝑥 ) ) ) ) ⊆ ( bday 𝑥 ) )
48 17 47 eqsstrrid ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( -us𝑥𝑂 ) ) ⊆ ( bday 𝑥𝑂 ) ) → ( bday “ ( ( -us “ ( R ‘ 𝑥 ) ) ∪ ( -us “ ( L ‘ 𝑥 ) ) ) ) ⊆ ( bday 𝑥 ) )
49 scutbdaybnd ( ( ( -us “ ( R ‘ 𝑥 ) ) <<s ( -us “ ( L ‘ 𝑥 ) ) ∧ ( bday 𝑥 ) ∈ On ∧ ( bday “ ( ( -us “ ( R ‘ 𝑥 ) ) ∪ ( -us “ ( L ‘ 𝑥 ) ) ) ) ⊆ ( bday 𝑥 ) ) → ( bday ‘ ( ( -us “ ( R ‘ 𝑥 ) ) |s ( -us “ ( L ‘ 𝑥 ) ) ) ) ⊆ ( bday 𝑥 ) )
50 22 49 mp3an2 ( ( ( -us “ ( R ‘ 𝑥 ) ) <<s ( -us “ ( L ‘ 𝑥 ) ) ∧ ( bday “ ( ( -us “ ( R ‘ 𝑥 ) ) ∪ ( -us “ ( L ‘ 𝑥 ) ) ) ) ⊆ ( bday 𝑥 ) ) → ( bday ‘ ( ( -us “ ( R ‘ 𝑥 ) ) |s ( -us “ ( L ‘ 𝑥 ) ) ) ) ⊆ ( bday 𝑥 ) )
51 10 48 50 syl2an2r ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( -us𝑥𝑂 ) ) ⊆ ( bday 𝑥𝑂 ) ) → ( bday ‘ ( ( -us “ ( R ‘ 𝑥 ) ) |s ( -us “ ( L ‘ 𝑥 ) ) ) ) ⊆ ( bday 𝑥 ) )
52 9 51 eqsstrd ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( -us𝑥𝑂 ) ) ⊆ ( bday 𝑥𝑂 ) ) → ( bday ‘ ( -us𝑥 ) ) ⊆ ( bday 𝑥 ) )
53 52 ex ( 𝑥 No → ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( -us𝑥𝑂 ) ) ⊆ ( bday 𝑥𝑂 ) → ( bday ‘ ( -us𝑥 ) ) ⊆ ( bday 𝑥 ) ) )
54 3 6 53 noinds ( 𝐴 No → ( bday ‘ ( -us𝐴 ) ) ⊆ ( bday 𝐴 ) )