Description: The surreals are closed under negation. Theorem 6(ii) of Conway p. 18. (Contributed by Scott Fenton, 3-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | negscl | ⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sno | ⊢ 0s ∈ No | |
2 | negsprop | ⊢ ( ( 𝐴 ∈ No ∧ 0s ∈ No ) → ( ( -us ‘ 𝐴 ) ∈ No ∧ ( 𝐴 <s 0s → ( -us ‘ 0s ) <s ( -us ‘ 𝐴 ) ) ) ) | |
3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ No → ( ( -us ‘ 𝐴 ) ∈ No ∧ ( 𝐴 <s 0s → ( -us ‘ 0s ) <s ( -us ‘ 𝐴 ) ) ) ) |
4 | 3 | simpld | ⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) ∈ No ) |