Metamath Proof Explorer


Theorem negsdi

Description: Distribution of surreal negative over addition. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Assertion negsdi ( ( 𝐴 No 𝐵 No ) → ( -us ‘ ( 𝐴 +s 𝐵 ) ) = ( ( -us𝐴 ) +s ( -us𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 addscl ( ( 𝐴 No 𝐵 No ) → ( 𝐴 +s 𝐵 ) ∈ No )
2 1 negsidd ( ( 𝐴 No 𝐵 No ) → ( ( 𝐴 +s 𝐵 ) +s ( -us ‘ ( 𝐴 +s 𝐵 ) ) ) = 0s )
3 negsid ( 𝐴 No → ( 𝐴 +s ( -us𝐴 ) ) = 0s )
4 negsid ( 𝐵 No → ( 𝐵 +s ( -us𝐵 ) ) = 0s )
5 3 4 oveqan12d ( ( 𝐴 No 𝐵 No ) → ( ( 𝐴 +s ( -us𝐴 ) ) +s ( 𝐵 +s ( -us𝐵 ) ) ) = ( 0s +s 0s ) )
6 0sno 0s No
7 addslid ( 0s No → ( 0s +s 0s ) = 0s )
8 6 7 ax-mp ( 0s +s 0s ) = 0s
9 5 8 eqtr2di ( ( 𝐴 No 𝐵 No ) → 0s = ( ( 𝐴 +s ( -us𝐴 ) ) +s ( 𝐵 +s ( -us𝐵 ) ) ) )
10 simpl ( ( 𝐴 No 𝐵 No ) → 𝐴 No )
11 10 negscld ( ( 𝐴 No 𝐵 No ) → ( -us𝐴 ) ∈ No )
12 simpr ( ( 𝐴 No 𝐵 No ) → 𝐵 No )
13 12 negscld ( ( 𝐴 No 𝐵 No ) → ( -us𝐵 ) ∈ No )
14 10 11 12 13 adds4d ( ( 𝐴 No 𝐵 No ) → ( ( 𝐴 +s ( -us𝐴 ) ) +s ( 𝐵 +s ( -us𝐵 ) ) ) = ( ( 𝐴 +s 𝐵 ) +s ( ( -us𝐴 ) +s ( -us𝐵 ) ) ) )
15 2 9 14 3eqtrd ( ( 𝐴 No 𝐵 No ) → ( ( 𝐴 +s 𝐵 ) +s ( -us ‘ ( 𝐴 +s 𝐵 ) ) ) = ( ( 𝐴 +s 𝐵 ) +s ( ( -us𝐴 ) +s ( -us𝐵 ) ) ) )
16 1 negscld ( ( 𝐴 No 𝐵 No ) → ( -us ‘ ( 𝐴 +s 𝐵 ) ) ∈ No )
17 negscl ( 𝐴 No → ( -us𝐴 ) ∈ No )
18 negscl ( 𝐵 No → ( -us𝐵 ) ∈ No )
19 addscl ( ( ( -us𝐴 ) ∈ No ∧ ( -us𝐵 ) ∈ No ) → ( ( -us𝐴 ) +s ( -us𝐵 ) ) ∈ No )
20 17 18 19 syl2an ( ( 𝐴 No 𝐵 No ) → ( ( -us𝐴 ) +s ( -us𝐵 ) ) ∈ No )
21 16 20 1 addscan1d ( ( 𝐴 No 𝐵 No ) → ( ( ( 𝐴 +s 𝐵 ) +s ( -us ‘ ( 𝐴 +s 𝐵 ) ) ) = ( ( 𝐴 +s 𝐵 ) +s ( ( -us𝐴 ) +s ( -us𝐵 ) ) ) ↔ ( -us ‘ ( 𝐴 +s 𝐵 ) ) = ( ( -us𝐴 ) +s ( -us𝐵 ) ) ) )
22 15 21 mpbid ( ( 𝐴 No 𝐵 No ) → ( -us ‘ ( 𝐴 +s 𝐵 ) ) = ( ( -us𝐴 ) +s ( -us𝐵 ) ) )