Metamath Proof Explorer


Theorem negsf

Description: Function statement for surreal negation. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negsf -us : No No

Proof

Step Hyp Ref Expression
1 negsfn -us Fn No
2 negscl ( 𝑥 No → ( -us𝑥 ) ∈ No )
3 2 rgen 𝑥 No ( -us𝑥 ) ∈ No
4 ffnfv ( -us : No No ↔ ( -us Fn No ∧ ∀ 𝑥 No ( -us𝑥 ) ∈ No ) )
5 1 3 4 mpbir2an -us : No No