Step |
Hyp |
Ref |
Expression |
1 |
|
negsf |
⊢ -us : No ⟶ No |
2 |
|
negs11 |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ( -us ‘ 𝑥 ) = ( -us ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
3 |
2
|
biimpd |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ( -us ‘ 𝑥 ) = ( -us ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
4 |
3
|
rgen2 |
⊢ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( -us ‘ 𝑥 ) = ( -us ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
5 |
|
dff13 |
⊢ ( -us : No –1-1→ No ↔ ( -us : No ⟶ No ∧ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( -us ‘ 𝑥 ) = ( -us ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
6 |
1 4 5
|
mpbir2an |
⊢ -us : No –1-1→ No |
7 |
|
negsfo |
⊢ -us : No –onto→ No |
8 |
|
df-f1o |
⊢ ( -us : No –1-1-onto→ No ↔ ( -us : No –1-1→ No ∧ -us : No –onto→ No ) ) |
9 |
6 7 8
|
mpbir2an |
⊢ -us : No –1-1-onto→ No |