Metamath Proof Explorer


Theorem negsf1o

Description: Surreal negation is a bijection. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negsf1o -us : No 1-1-onto No

Proof

Step Hyp Ref Expression
1 negsf -us : No No
2 negs11 ( ( 𝑥 No 𝑦 No ) → ( ( -us𝑥 ) = ( -us𝑦 ) ↔ 𝑥 = 𝑦 ) )
3 2 biimpd ( ( 𝑥 No 𝑦 No ) → ( ( -us𝑥 ) = ( -us𝑦 ) → 𝑥 = 𝑦 ) )
4 3 rgen2 𝑥 No 𝑦 No ( ( -us𝑥 ) = ( -us𝑦 ) → 𝑥 = 𝑦 )
5 dff13 ( -us : No 1-1 No ↔ ( -us : No No ∧ ∀ 𝑥 No 𝑦 No ( ( -us𝑥 ) = ( -us𝑦 ) → 𝑥 = 𝑦 ) ) )
6 1 4 5 mpbir2an -us : No 1-1 No
7 negsfo -us : No onto No
8 df-f1o ( -us : No 1-1-onto No ↔ ( -us : No 1-1 No ∧ -us : No onto No ) )
9 6 7 8 mpbir2an -us : No 1-1-onto No