Metamath Proof Explorer


Theorem negsfo

Description: Function statement for surreal negation. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negsfo -us : No onto No

Proof

Step Hyp Ref Expression
1 negsf -us : No No
2 negscl ( 𝑥 No → ( -us𝑥 ) ∈ No )
3 negnegs ( 𝑥 No → ( -us ‘ ( -us𝑥 ) ) = 𝑥 )
4 3 eqcomd ( 𝑥 No 𝑥 = ( -us ‘ ( -us𝑥 ) ) )
5 fveq2 ( 𝑦 = ( -us𝑥 ) → ( -us𝑦 ) = ( -us ‘ ( -us𝑥 ) ) )
6 5 eqeq2d ( 𝑦 = ( -us𝑥 ) → ( 𝑥 = ( -us𝑦 ) ↔ 𝑥 = ( -us ‘ ( -us𝑥 ) ) ) )
7 6 rspcev ( ( ( -us𝑥 ) ∈ No 𝑥 = ( -us ‘ ( -us𝑥 ) ) ) → ∃ 𝑦 No 𝑥 = ( -us𝑦 ) )
8 2 4 7 syl2anc ( 𝑥 No → ∃ 𝑦 No 𝑥 = ( -us𝑦 ) )
9 8 rgen 𝑥 No 𝑦 No 𝑥 = ( -us𝑦 )
10 dffo3 ( -us : No onto No ↔ ( -us : No No ∧ ∀ 𝑥 No 𝑦 No 𝑥 = ( -us𝑦 ) ) )
11 1 9 10 mpbir2an -us : No onto No