Step |
Hyp |
Ref |
Expression |
1 |
|
negsf |
⊢ -us : No ⟶ No |
2 |
|
negscl |
⊢ ( 𝑥 ∈ No → ( -us ‘ 𝑥 ) ∈ No ) |
3 |
|
negnegs |
⊢ ( 𝑥 ∈ No → ( -us ‘ ( -us ‘ 𝑥 ) ) = 𝑥 ) |
4 |
3
|
eqcomd |
⊢ ( 𝑥 ∈ No → 𝑥 = ( -us ‘ ( -us ‘ 𝑥 ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑦 = ( -us ‘ 𝑥 ) → ( -us ‘ 𝑦 ) = ( -us ‘ ( -us ‘ 𝑥 ) ) ) |
6 |
5
|
eqeq2d |
⊢ ( 𝑦 = ( -us ‘ 𝑥 ) → ( 𝑥 = ( -us ‘ 𝑦 ) ↔ 𝑥 = ( -us ‘ ( -us ‘ 𝑥 ) ) ) ) |
7 |
6
|
rspcev |
⊢ ( ( ( -us ‘ 𝑥 ) ∈ No ∧ 𝑥 = ( -us ‘ ( -us ‘ 𝑥 ) ) ) → ∃ 𝑦 ∈ No 𝑥 = ( -us ‘ 𝑦 ) ) |
8 |
2 4 7
|
syl2anc |
⊢ ( 𝑥 ∈ No → ∃ 𝑦 ∈ No 𝑥 = ( -us ‘ 𝑦 ) ) |
9 |
8
|
rgen |
⊢ ∀ 𝑥 ∈ No ∃ 𝑦 ∈ No 𝑥 = ( -us ‘ 𝑦 ) |
10 |
|
dffo3 |
⊢ ( -us : No –onto→ No ↔ ( -us : No ⟶ No ∧ ∀ 𝑥 ∈ No ∃ 𝑦 ∈ No 𝑥 = ( -us ‘ 𝑦 ) ) ) |
11 |
1 9 10
|
mpbir2an |
⊢ -us : No –onto→ No |