Metamath Proof Explorer


Theorem negsid

Description: Surreal addition of a number and its negative. Theorem 4(iii) of Conway p. 17. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negsid ( 𝐴 No → ( 𝐴 +s ( -us𝐴 ) ) = 0s )

Proof

Step Hyp Ref Expression
1 id ( 𝑥 = 𝑥𝑂𝑥 = 𝑥𝑂 )
2 fveq2 ( 𝑥 = 𝑥𝑂 → ( -us𝑥 ) = ( -us𝑥𝑂 ) )
3 1 2 oveq12d ( 𝑥 = 𝑥𝑂 → ( 𝑥 +s ( -us𝑥 ) ) = ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) )
4 3 eqeq1d ( 𝑥 = 𝑥𝑂 → ( ( 𝑥 +s ( -us𝑥 ) ) = 0s ↔ ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) )
5 id ( 𝑥 = 𝐴𝑥 = 𝐴 )
6 fveq2 ( 𝑥 = 𝐴 → ( -us𝑥 ) = ( -us𝐴 ) )
7 5 6 oveq12d ( 𝑥 = 𝐴 → ( 𝑥 +s ( -us𝑥 ) ) = ( 𝐴 +s ( -us𝐴 ) ) )
8 7 eqeq1d ( 𝑥 = 𝐴 → ( ( 𝑥 +s ( -us𝑥 ) ) = 0s ↔ ( 𝐴 +s ( -us𝐴 ) ) = 0s ) )
9 lltropt ( L ‘ 𝑥 ) <<s ( R ‘ 𝑥 )
10 9 a1i ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( L ‘ 𝑥 ) <<s ( R ‘ 𝑥 ) )
11 negscut2 ( 𝑥 No → ( -us “ ( R ‘ 𝑥 ) ) <<s ( -us “ ( L ‘ 𝑥 ) ) )
12 11 adantr ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( -us “ ( R ‘ 𝑥 ) ) <<s ( -us “ ( L ‘ 𝑥 ) ) )
13 lrcut ( 𝑥 No → ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) = 𝑥 )
14 13 adantr ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) = 𝑥 )
15 14 eqcomd ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → 𝑥 = ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) )
16 negsval ( 𝑥 No → ( -us𝑥 ) = ( ( -us “ ( R ‘ 𝑥 ) ) |s ( -us “ ( L ‘ 𝑥 ) ) ) )
17 16 adantr ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( -us𝑥 ) = ( ( -us “ ( R ‘ 𝑥 ) ) |s ( -us “ ( L ‘ 𝑥 ) ) ) )
18 10 12 15 17 addsunif ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( 𝑥 +s ( -us𝑥 ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) } ) |s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) } ) ) )
19 negsfn -us Fn No
20 rightssno ( R ‘ 𝑥 ) ⊆ No
21 oveq2 ( 𝑝 = ( -us𝑥𝑅 ) → ( 𝑥 +s 𝑝 ) = ( 𝑥 +s ( -us𝑥𝑅 ) ) )
22 21 eqeq2d ( 𝑝 = ( -us𝑥𝑅 ) → ( 𝑏 = ( 𝑥 +s 𝑝 ) ↔ 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) )
23 22 imaeqsexv ( ( -us Fn No ∧ ( R ‘ 𝑥 ) ⊆ No ) → ( ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) )
24 19 20 23 mp2an ( ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) )
25 24 abbii { 𝑏 ∣ ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) } = { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) }
26 25 uneq2i ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } )
27 leftssno ( L ‘ 𝑥 ) ⊆ No
28 oveq2 ( 𝑞 = ( -us𝑥𝐿 ) → ( 𝑥 +s 𝑞 ) = ( 𝑥 +s ( -us𝑥𝐿 ) ) )
29 28 eqeq2d ( 𝑞 = ( -us𝑥𝐿 ) → ( 𝑑 = ( 𝑥 +s 𝑞 ) ↔ 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) )
30 29 imaeqsexv ( ( -us Fn No ∧ ( L ‘ 𝑥 ) ⊆ No ) → ( ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) )
31 19 27 30 mp2an ( ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) )
32 31 abbii { 𝑑 ∣ ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) } = { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) }
33 32 uneq2i ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) } ) = ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } )
34 26 33 oveq12i ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) } ) |s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) )
35 fvex ( L ‘ 𝑥 ) ∈ V
36 35 abrexex { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∈ V
37 fvex ( R ‘ 𝑥 ) ∈ V
38 37 abrexex { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ∈ V
39 36 38 unex ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) ∈ V
40 39 a1i ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) ∈ V )
41 snex { 0s } ∈ V
42 41 a1i ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → { 0s } ∈ V )
43 27 sseli ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) → 𝑥𝐿 No )
44 43 adantl ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 𝑥𝐿 No )
45 simpll ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 𝑥 No )
46 45 negscld ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( -us𝑥 ) ∈ No )
47 44 46 addscld ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 +s ( -us𝑥 ) ) ∈ No )
48 eleq1 ( 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) → ( 𝑎 No ↔ ( 𝑥𝐿 +s ( -us𝑥 ) ) ∈ No ) )
49 47 48 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) → 𝑎 No ) )
50 49 rexlimdva ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) → 𝑎 No ) )
51 50 abssdv ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ⊆ No )
52 simpll ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 𝑥 No )
53 20 sseli ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) → 𝑥𝑅 No )
54 53 adantl ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 𝑥𝑅 No )
55 54 negscld ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( -us𝑥𝑅 ) ∈ No )
56 52 55 addscld ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥 +s ( -us𝑥𝑅 ) ) ∈ No )
57 eleq1 ( 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) → ( 𝑏 No ↔ ( 𝑥 +s ( -us𝑥𝑅 ) ) ∈ No ) )
58 56 57 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) → 𝑏 No ) )
59 58 rexlimdva ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) → 𝑏 No ) )
60 59 abssdv ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ⊆ No )
61 51 60 unssd ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) ⊆ No )
62 0sno 0s No
63 snssi ( 0s No → { 0s } ⊆ No )
64 62 63 mp1i ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → { 0s } ⊆ No )
65 elun ( 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) ↔ ( 𝑝 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∨ 𝑝 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) )
66 vex 𝑝 ∈ V
67 eqeq1 ( 𝑎 = 𝑝 → ( 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ↔ 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ) )
68 67 rexbidv ( 𝑎 = 𝑝 → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ) )
69 66 68 elab ( 𝑝 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) )
70 eqeq1 ( 𝑏 = 𝑝 → ( 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ↔ 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) )
71 70 rexbidv ( 𝑏 = 𝑝 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) )
72 66 71 elab ( 𝑝 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) )
73 69 72 orbi12i ( ( 𝑝 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∨ 𝑝 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) )
74 65 73 bitri ( 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) )
75 velsn ( 𝑞 ∈ { 0s } ↔ 𝑞 = 0s )
76 74 75 anbi12i ( ( 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) ∧ 𝑞 ∈ { 0s } ) ↔ ( ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) ∧ 𝑞 = 0s ) )
77 leftval ( L ‘ 𝑥 ) = { 𝑥𝐿 ∈ ( O ‘ ( bday 𝑥 ) ) ∣ 𝑥𝐿 <s 𝑥 }
78 77 reqabi ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ↔ ( 𝑥𝐿 ∈ ( O ‘ ( bday 𝑥 ) ) ∧ 𝑥𝐿 <s 𝑥 ) )
79 78 simprbi ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) → 𝑥𝐿 <s 𝑥 )
80 79 adantl ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 𝑥𝐿 <s 𝑥 )
81 sltnegim ( ( 𝑥𝐿 No 𝑥 No ) → ( 𝑥𝐿 <s 𝑥 → ( -us𝑥 ) <s ( -us𝑥𝐿 ) ) )
82 44 45 81 syl2anc ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 <s 𝑥 → ( -us𝑥 ) <s ( -us𝑥𝐿 ) ) )
83 80 82 mpd ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( -us𝑥 ) <s ( -us𝑥𝐿 ) )
84 44 negscld ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( -us𝑥𝐿 ) ∈ No )
85 46 84 44 sltadd2d ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( ( -us𝑥 ) <s ( -us𝑥𝐿 ) ↔ ( 𝑥𝐿 +s ( -us𝑥 ) ) <s ( 𝑥𝐿 +s ( -us𝑥𝐿 ) ) ) )
86 83 85 mpbid ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 +s ( -us𝑥 ) ) <s ( 𝑥𝐿 +s ( -us𝑥𝐿 ) ) )
87 id ( 𝑥𝑂 = 𝑥𝐿𝑥𝑂 = 𝑥𝐿 )
88 fveq2 ( 𝑥𝑂 = 𝑥𝐿 → ( -us𝑥𝑂 ) = ( -us𝑥𝐿 ) )
89 87 88 oveq12d ( 𝑥𝑂 = 𝑥𝐿 → ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = ( 𝑥𝐿 +s ( -us𝑥𝐿 ) ) )
90 89 eqeq1d ( 𝑥𝑂 = 𝑥𝐿 → ( ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ↔ ( 𝑥𝐿 +s ( -us𝑥𝐿 ) ) = 0s ) )
91 simplr ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s )
92 elun1 ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) → 𝑥𝐿 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) )
93 92 adantl ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 𝑥𝐿 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) )
94 90 91 93 rspcdva ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 +s ( -us𝑥𝐿 ) ) = 0s )
95 86 94 breqtrd ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 +s ( -us𝑥 ) ) <s 0s )
96 breq1 ( 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) → ( 𝑝 <s 0s ↔ ( 𝑥𝐿 +s ( -us𝑥 ) ) <s 0s ) )
97 95 96 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) → 𝑝 <s 0s ) )
98 97 rexlimdva ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) → 𝑝 <s 0s ) )
99 98 imp ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ) → 𝑝 <s 0s )
100 rightval ( R ‘ 𝑥 ) = { 𝑥𝑅 ∈ ( O ‘ ( bday 𝑥 ) ) ∣ 𝑥 <s 𝑥𝑅 }
101 100 reqabi ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ↔ ( 𝑥𝑅 ∈ ( O ‘ ( bday 𝑥 ) ) ∧ 𝑥 <s 𝑥𝑅 ) )
102 101 simprbi ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) → 𝑥 <s 𝑥𝑅 )
103 102 adantl ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 𝑥 <s 𝑥𝑅 )
104 52 54 55 sltadd1d ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥 <s 𝑥𝑅 ↔ ( 𝑥 +s ( -us𝑥𝑅 ) ) <s ( 𝑥𝑅 +s ( -us𝑥𝑅 ) ) ) )
105 103 104 mpbid ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥 +s ( -us𝑥𝑅 ) ) <s ( 𝑥𝑅 +s ( -us𝑥𝑅 ) ) )
106 id ( 𝑥𝑂 = 𝑥𝑅𝑥𝑂 = 𝑥𝑅 )
107 fveq2 ( 𝑥𝑂 = 𝑥𝑅 → ( -us𝑥𝑂 ) = ( -us𝑥𝑅 ) )
108 106 107 oveq12d ( 𝑥𝑂 = 𝑥𝑅 → ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = ( 𝑥𝑅 +s ( -us𝑥𝑅 ) ) )
109 108 eqeq1d ( 𝑥𝑂 = 𝑥𝑅 → ( ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ↔ ( 𝑥𝑅 +s ( -us𝑥𝑅 ) ) = 0s ) )
110 simplr ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s )
111 elun2 ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) → 𝑥𝑅 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) )
112 111 adantl ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 𝑥𝑅 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) )
113 109 110 112 rspcdva ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥𝑅 +s ( -us𝑥𝑅 ) ) = 0s )
114 105 113 breqtrd ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥 +s ( -us𝑥𝑅 ) ) <s 0s )
115 breq1 ( 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) → ( 𝑝 <s 0s ↔ ( 𝑥 +s ( -us𝑥𝑅 ) ) <s 0s ) )
116 114 115 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) → 𝑝 <s 0s ) )
117 116 rexlimdva ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) → 𝑝 <s 0s ) )
118 117 imp ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) → 𝑝 <s 0s )
119 99 118 jaodan ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) ) → 𝑝 <s 0s )
120 breq2 ( 𝑞 = 0s → ( 𝑝 <s 𝑞𝑝 <s 0s ) )
121 119 120 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) ) → ( 𝑞 = 0s𝑝 <s 𝑞 ) )
122 121 expimpd ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ( ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) ∧ 𝑞 = 0s ) → 𝑝 <s 𝑞 ) )
123 76 122 biimtrid ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ( 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) ∧ 𝑞 ∈ { 0s } ) → 𝑝 <s 𝑞 ) )
124 123 3impib ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) ∧ 𝑞 ∈ { 0s } ) → 𝑝 <s 𝑞 )
125 40 42 61 64 124 ssltd ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) <<s { 0s } )
126 37 abrexex { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∈ V
127 35 abrexex { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ∈ V
128 126 127 unex ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ∈ V
129 128 a1i ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ∈ V )
130 52 negscld ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( -us𝑥 ) ∈ No )
131 54 130 addscld ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥𝑅 +s ( -us𝑥 ) ) ∈ No )
132 eleq1 ( 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) → ( 𝑐 No ↔ ( 𝑥𝑅 +s ( -us𝑥 ) ) ∈ No ) )
133 131 132 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) → 𝑐 No ) )
134 133 rexlimdva ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) → 𝑐 No ) )
135 134 abssdv ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ⊆ No )
136 45 84 addscld ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥 +s ( -us𝑥𝐿 ) ) ∈ No )
137 eleq1 ( 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) → ( 𝑑 No ↔ ( 𝑥 +s ( -us𝑥𝐿 ) ) ∈ No ) )
138 136 137 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) → 𝑑 No ) )
139 138 rexlimdva ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) → 𝑑 No ) )
140 139 abssdv ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ⊆ No )
141 135 140 unssd ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ⊆ No )
142 velsn ( 𝑝 ∈ { 0s } ↔ 𝑝 = 0s )
143 elun ( 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ↔ ( 𝑞 ∈ { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∨ 𝑞 ∈ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) )
144 vex 𝑞 ∈ V
145 eqeq1 ( 𝑐 = 𝑞 → ( 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ↔ 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ) )
146 145 rexbidv ( 𝑐 = 𝑞 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ) )
147 144 146 elab ( 𝑞 ∈ { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) )
148 eqeq1 ( 𝑑 = 𝑞 → ( 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ↔ 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) )
149 148 rexbidv ( 𝑑 = 𝑞 → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) )
150 144 149 elab ( 𝑞 ∈ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) )
151 147 150 orbi12i ( ( 𝑞 ∈ { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∨ 𝑞 ∈ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) )
152 143 151 bitri ( 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) )
153 142 152 anbi12i ( ( 𝑝 ∈ { 0s } ∧ 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ) ↔ ( 𝑝 = 0s ∧ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) ) )
154 sltnegim ( ( 𝑥 No 𝑥𝑅 No ) → ( 𝑥 <s 𝑥𝑅 → ( -us𝑥𝑅 ) <s ( -us𝑥 ) ) )
155 52 54 154 syl2anc ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥 <s 𝑥𝑅 → ( -us𝑥𝑅 ) <s ( -us𝑥 ) ) )
156 103 155 mpd ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( -us𝑥𝑅 ) <s ( -us𝑥 ) )
157 55 130 54 sltadd2d ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( ( -us𝑥𝑅 ) <s ( -us𝑥 ) ↔ ( 𝑥𝑅 +s ( -us𝑥𝑅 ) ) <s ( 𝑥𝑅 +s ( -us𝑥 ) ) ) )
158 156 157 mpbid ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥𝑅 +s ( -us𝑥𝑅 ) ) <s ( 𝑥𝑅 +s ( -us𝑥 ) ) )
159 113 158 eqbrtrrd ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 0s <s ( 𝑥𝑅 +s ( -us𝑥 ) ) )
160 breq2 ( 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) → ( 0s <s 𝑞 ↔ 0s <s ( 𝑥𝑅 +s ( -us𝑥 ) ) ) )
161 159 160 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) → 0s <s 𝑞 ) )
162 161 rexlimdva ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) → 0s <s 𝑞 ) )
163 162 imp ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ) → 0s <s 𝑞 )
164 44 45 84 sltadd1d ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 <s 𝑥 ↔ ( 𝑥𝐿 +s ( -us𝑥𝐿 ) ) <s ( 𝑥 +s ( -us𝑥𝐿 ) ) ) )
165 80 164 mpbid ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 +s ( -us𝑥𝐿 ) ) <s ( 𝑥 +s ( -us𝑥𝐿 ) ) )
166 94 165 eqbrtrrd ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 0s <s ( 𝑥 +s ( -us𝑥𝐿 ) ) )
167 breq2 ( 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) → ( 0s <s 𝑞 ↔ 0s <s ( 𝑥 +s ( -us𝑥𝐿 ) ) ) )
168 166 167 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) → 0s <s 𝑞 ) )
169 168 rexlimdva ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) → 0s <s 𝑞 ) )
170 169 imp ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) → 0s <s 𝑞 )
171 163 170 jaodan ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) ) → 0s <s 𝑞 )
172 breq1 ( 𝑝 = 0s → ( 𝑝 <s 𝑞 ↔ 0s <s 𝑞 ) )
173 171 172 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) ) → ( 𝑝 = 0s𝑝 <s 𝑞 ) )
174 173 ex ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) → ( 𝑝 = 0s𝑝 <s 𝑞 ) ) )
175 174 impcomd ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ( 𝑝 = 0s ∧ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) ) → 𝑝 <s 𝑞 ) )
176 153 175 biimtrid ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ( 𝑝 ∈ { 0s } ∧ 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ) → 𝑝 <s 𝑞 ) )
177 176 3impib ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑝 ∈ { 0s } ∧ 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ) → 𝑝 <s 𝑞 )
178 42 129 64 141 177 ssltd ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → { 0s } <<s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) )
179 125 178 cuteq0 ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ) = 0s )
180 34 179 eqtrid ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) } ) |s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) } ) ) = 0s )
181 18 180 eqtrd ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( 𝑥 +s ( -us𝑥 ) ) = 0s )
182 181 ex ( 𝑥 No → ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s → ( 𝑥 +s ( -us𝑥 ) ) = 0s ) )
183 4 8 182 noinds ( 𝐴 No → ( 𝐴 +s ( -us𝐴 ) ) = 0s )