Metamath Proof Explorer


Theorem negsprop

Description: Show closure and ordering properties of negation. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negsprop ( ( 𝐴 No 𝐵 No ) → ( ( -us𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( -us𝐵 ) <s ( -us𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 bdayelon ( bday 𝐴 ) ∈ On
2 bdayelon ( bday 𝐵 ) ∈ On
3 1 2 onun2i ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) ∈ On
4 risset ( ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) ∈ On ↔ ∃ 𝑎 ∈ On 𝑎 = ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) )
5 3 4 mpbi 𝑎 ∈ On 𝑎 = ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) )
6 eqeq1 ( 𝑎 = 𝑏 → ( 𝑎 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) ↔ 𝑏 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) ) )
7 6 imbi1d ( 𝑎 = 𝑏 → ( ( 𝑎 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ) ) ↔ ( 𝑏 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ) ) ) )
8 7 2ralbidv ( 𝑎 = 𝑏 → ( ∀ 𝑝 No 𝑞 No ( 𝑎 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ) ) ↔ ∀ 𝑝 No 𝑞 No ( 𝑏 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ) ) ) )
9 fveq2 ( 𝑝 = 𝑥 → ( bday 𝑝 ) = ( bday 𝑥 ) )
10 9 uneq1d ( 𝑝 = 𝑥 → ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) = ( ( bday 𝑥 ) ∪ ( bday 𝑞 ) ) )
11 10 eqeq2d ( 𝑝 = 𝑥 → ( 𝑏 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) ↔ 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑞 ) ) ) )
12 fveq2 ( 𝑝 = 𝑥 → ( -us𝑝 ) = ( -us𝑥 ) )
13 12 eleq1d ( 𝑝 = 𝑥 → ( ( -us𝑝 ) ∈ No ↔ ( -us𝑥 ) ∈ No ) )
14 breq1 ( 𝑝 = 𝑥 → ( 𝑝 <s 𝑞𝑥 <s 𝑞 ) )
15 12 breq2d ( 𝑝 = 𝑥 → ( ( -us𝑞 ) <s ( -us𝑝 ) ↔ ( -us𝑞 ) <s ( -us𝑥 ) ) )
16 14 15 imbi12d ( 𝑝 = 𝑥 → ( ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ↔ ( 𝑥 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑥 ) ) ) )
17 13 16 anbi12d ( 𝑝 = 𝑥 → ( ( ( -us𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ) ↔ ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑥 ) ) ) ) )
18 11 17 imbi12d ( 𝑝 = 𝑥 → ( ( 𝑏 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ) ) ↔ ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑥 ) ) ) ) ) )
19 fveq2 ( 𝑞 = 𝑦 → ( bday 𝑞 ) = ( bday 𝑦 ) )
20 19 uneq2d ( 𝑞 = 𝑦 → ( ( bday 𝑥 ) ∪ ( bday 𝑞 ) ) = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) )
21 20 eqeq2d ( 𝑞 = 𝑦 → ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑞 ) ) ↔ 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ) )
22 breq2 ( 𝑞 = 𝑦 → ( 𝑥 <s 𝑞𝑥 <s 𝑦 ) )
23 fveq2 ( 𝑞 = 𝑦 → ( -us𝑞 ) = ( -us𝑦 ) )
24 23 breq1d ( 𝑞 = 𝑦 → ( ( -us𝑞 ) <s ( -us𝑥 ) ↔ ( -us𝑦 ) <s ( -us𝑥 ) ) )
25 22 24 imbi12d ( 𝑞 = 𝑦 → ( ( 𝑥 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑥 ) ) ↔ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) )
26 25 anbi2d ( 𝑞 = 𝑦 → ( ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑥 ) ) ) ↔ ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
27 21 26 imbi12d ( 𝑞 = 𝑦 → ( ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑥 ) ) ) ) ↔ ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ) )
28 18 27 cbvral2vw ( ∀ 𝑝 No 𝑞 No ( 𝑏 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ) ) ↔ ∀ 𝑥 No 𝑦 No ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
29 8 28 bitrdi ( 𝑎 = 𝑏 → ( ∀ 𝑝 No 𝑞 No ( 𝑎 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ) ) ↔ ∀ 𝑥 No 𝑦 No ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ) )
30 raleq ( 𝑎 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ∀ 𝑏𝑎𝑥 No 𝑦 No ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ↔ ∀ 𝑏 ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) ∀ 𝑥 No 𝑦 No ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ) )
31 ralrot3 ( ∀ 𝑥 No 𝑦 No 𝑏 ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ↔ ∀ 𝑏 ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) ∀ 𝑥 No 𝑦 No ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
32 r19.23v ( ∀ 𝑏 ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ↔ ( ∃ 𝑏 ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
33 risset ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) ↔ ∃ 𝑏 ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) )
34 33 imbi1i ( ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ↔ ( ∃ 𝑏 ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
35 32 34 bitr4i ( ∀ 𝑏 ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ↔ ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
36 35 2ralbii ( ∀ 𝑥 No 𝑦 No 𝑏 ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ↔ ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
37 31 36 bitr3i ( ∀ 𝑏 ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) ∀ 𝑥 No 𝑦 No ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ↔ ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
38 30 37 bitrdi ( 𝑎 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ∀ 𝑏𝑎𝑥 No 𝑦 No ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ↔ ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ) )
39 simpr ( ( ( 𝑝 No 𝑞 No ) ∧ ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ) → ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
40 simpll ( ( ( 𝑝 No 𝑞 No ) ∧ ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ) → 𝑝 No )
41 39 40 negsproplem3 ( ( ( 𝑝 No 𝑞 No ) ∧ ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ) → ( ( -us𝑝 ) ∈ No ∧ ( -us “ ( R ‘ 𝑝 ) ) <<s { ( -us𝑝 ) } ∧ { ( -us𝑝 ) } <<s ( -us “ ( L ‘ 𝑝 ) ) ) )
42 41 simp1d ( ( ( 𝑝 No 𝑞 No ) ∧ ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ) → ( -us𝑝 ) ∈ No )
43 simplr ( ( ( ( 𝑝 No 𝑞 No ) ∧ ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ) ∧ 𝑝 <s 𝑞 ) → ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
44 simplll ( ( ( ( 𝑝 No 𝑞 No ) ∧ ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ) ∧ 𝑝 <s 𝑞 ) → 𝑝 No )
45 simpllr ( ( ( ( 𝑝 No 𝑞 No ) ∧ ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ) ∧ 𝑝 <s 𝑞 ) → 𝑞 No )
46 simpr ( ( ( ( 𝑝 No 𝑞 No ) ∧ ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ) ∧ 𝑝 <s 𝑞 ) → 𝑝 <s 𝑞 )
47 43 44 45 46 negsproplem7 ( ( ( ( 𝑝 No 𝑞 No ) ∧ ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ) ∧ 𝑝 <s 𝑞 ) → ( -us𝑞 ) <s ( -us𝑝 ) )
48 47 ex ( ( ( 𝑝 No 𝑞 No ) ∧ ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ) → ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) )
49 42 48 jca ( ( ( 𝑝 No 𝑞 No ) ∧ ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ) → ( ( -us𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ) )
50 49 expcom ( ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) → ( ( 𝑝 No 𝑞 No ) → ( ( -us𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ) ) )
51 38 50 biimtrdi ( 𝑎 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ∀ 𝑏𝑎𝑥 No 𝑦 No ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) → ( ( 𝑝 No 𝑞 No ) → ( ( -us𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ) ) ) )
52 51 com3l ( ∀ 𝑏𝑎𝑥 No 𝑦 No ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) → ( ( 𝑝 No 𝑞 No ) → ( 𝑎 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ) ) ) )
53 52 ralrimivv ( ∀ 𝑏𝑎𝑥 No 𝑦 No ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) → ∀ 𝑝 No 𝑞 No ( 𝑎 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ) ) )
54 53 a1i ( 𝑎 ∈ On → ( ∀ 𝑏𝑎𝑥 No 𝑦 No ( 𝑏 = ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) → ∀ 𝑝 No 𝑞 No ( 𝑎 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ) ) ) )
55 29 54 tfis2 ( 𝑎 ∈ On → ∀ 𝑝 No 𝑞 No ( 𝑎 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ) ) )
56 fveq2 ( 𝑝 = 𝐴 → ( bday 𝑝 ) = ( bday 𝐴 ) )
57 56 uneq1d ( 𝑝 = 𝐴 → ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) = ( ( bday 𝐴 ) ∪ ( bday 𝑞 ) ) )
58 57 eqeq2d ( 𝑝 = 𝐴 → ( 𝑎 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) ↔ 𝑎 = ( ( bday 𝐴 ) ∪ ( bday 𝑞 ) ) ) )
59 fveq2 ( 𝑝 = 𝐴 → ( -us𝑝 ) = ( -us𝐴 ) )
60 59 eleq1d ( 𝑝 = 𝐴 → ( ( -us𝑝 ) ∈ No ↔ ( -us𝐴 ) ∈ No ) )
61 breq1 ( 𝑝 = 𝐴 → ( 𝑝 <s 𝑞𝐴 <s 𝑞 ) )
62 59 breq2d ( 𝑝 = 𝐴 → ( ( -us𝑞 ) <s ( -us𝑝 ) ↔ ( -us𝑞 ) <s ( -us𝐴 ) ) )
63 61 62 imbi12d ( 𝑝 = 𝐴 → ( ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ↔ ( 𝐴 <s 𝑞 → ( -us𝑞 ) <s ( -us𝐴 ) ) ) )
64 60 63 anbi12d ( 𝑝 = 𝐴 → ( ( ( -us𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ) ↔ ( ( -us𝐴 ) ∈ No ∧ ( 𝐴 <s 𝑞 → ( -us𝑞 ) <s ( -us𝐴 ) ) ) ) )
65 58 64 imbi12d ( 𝑝 = 𝐴 → ( ( 𝑎 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ) ) ↔ ( 𝑎 = ( ( bday 𝐴 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝐴 ) ∈ No ∧ ( 𝐴 <s 𝑞 → ( -us𝑞 ) <s ( -us𝐴 ) ) ) ) ) )
66 fveq2 ( 𝑞 = 𝐵 → ( bday 𝑞 ) = ( bday 𝐵 ) )
67 66 uneq2d ( 𝑞 = 𝐵 → ( ( bday 𝐴 ) ∪ ( bday 𝑞 ) ) = ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) )
68 67 eqeq2d ( 𝑞 = 𝐵 → ( 𝑎 = ( ( bday 𝐴 ) ∪ ( bday 𝑞 ) ) ↔ 𝑎 = ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) ) )
69 breq2 ( 𝑞 = 𝐵 → ( 𝐴 <s 𝑞𝐴 <s 𝐵 ) )
70 fveq2 ( 𝑞 = 𝐵 → ( -us𝑞 ) = ( -us𝐵 ) )
71 70 breq1d ( 𝑞 = 𝐵 → ( ( -us𝑞 ) <s ( -us𝐴 ) ↔ ( -us𝐵 ) <s ( -us𝐴 ) ) )
72 69 71 imbi12d ( 𝑞 = 𝐵 → ( ( 𝐴 <s 𝑞 → ( -us𝑞 ) <s ( -us𝐴 ) ) ↔ ( 𝐴 <s 𝐵 → ( -us𝐵 ) <s ( -us𝐴 ) ) ) )
73 72 anbi2d ( 𝑞 = 𝐵 → ( ( ( -us𝐴 ) ∈ No ∧ ( 𝐴 <s 𝑞 → ( -us𝑞 ) <s ( -us𝐴 ) ) ) ↔ ( ( -us𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( -us𝐵 ) <s ( -us𝐴 ) ) ) ) )
74 68 73 imbi12d ( 𝑞 = 𝐵 → ( ( 𝑎 = ( ( bday 𝐴 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝐴 ) ∈ No ∧ ( 𝐴 <s 𝑞 → ( -us𝑞 ) <s ( -us𝐴 ) ) ) ) ↔ ( 𝑎 = ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) → ( ( -us𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( -us𝐵 ) <s ( -us𝐴 ) ) ) ) ) )
75 65 74 rspc2v ( ( 𝐴 No 𝐵 No ) → ( ∀ 𝑝 No 𝑞 No ( 𝑎 = ( ( bday 𝑝 ) ∪ ( bday 𝑞 ) ) → ( ( -us𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us𝑞 ) <s ( -us𝑝 ) ) ) ) → ( 𝑎 = ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) → ( ( -us𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( -us𝐵 ) <s ( -us𝐴 ) ) ) ) ) )
76 55 75 syl5com ( 𝑎 ∈ On → ( ( 𝐴 No 𝐵 No ) → ( 𝑎 = ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) → ( ( -us𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( -us𝐵 ) <s ( -us𝐴 ) ) ) ) ) )
77 76 com23 ( 𝑎 ∈ On → ( 𝑎 = ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) → ( ( 𝐴 No 𝐵 No ) → ( ( -us𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( -us𝐵 ) <s ( -us𝐴 ) ) ) ) ) )
78 77 rexlimiv ( ∃ 𝑎 ∈ On 𝑎 = ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) → ( ( 𝐴 No 𝐵 No ) → ( ( -us𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( -us𝐵 ) <s ( -us𝐴 ) ) ) ) )
79 5 78 ax-mp ( ( 𝐴 No 𝐵 No ) → ( ( -us𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( -us𝐵 ) <s ( -us𝐴 ) ) ) )