Step |
Hyp |
Ref |
Expression |
1 |
|
bdayelon |
⊢ ( bday ‘ 𝐴 ) ∈ On |
2 |
|
bdayelon |
⊢ ( bday ‘ 𝐵 ) ∈ On |
3 |
1 2
|
onun2i |
⊢ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ∈ On |
4 |
|
risset |
⊢ ( ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ∈ On ↔ ∃ 𝑎 ∈ On 𝑎 = ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ) |
5 |
3 4
|
mpbi |
⊢ ∃ 𝑎 ∈ On 𝑎 = ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) |
6 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) ↔ 𝑏 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) ) ) |
7 |
6
|
imbi1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) ) ↔ ( 𝑏 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) ) ) ) |
8 |
7
|
2ralbidv |
⊢ ( 𝑎 = 𝑏 → ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ( 𝑎 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) ) ↔ ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ( 𝑏 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑝 = 𝑥 → ( bday ‘ 𝑝 ) = ( bday ‘ 𝑥 ) ) |
10 |
9
|
uneq1d |
⊢ ( 𝑝 = 𝑥 → ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑞 ) ) ) |
11 |
10
|
eqeq2d |
⊢ ( 𝑝 = 𝑥 → ( 𝑏 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) ↔ 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑞 ) ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑝 = 𝑥 → ( -us ‘ 𝑝 ) = ( -us ‘ 𝑥 ) ) |
13 |
12
|
eleq1d |
⊢ ( 𝑝 = 𝑥 → ( ( -us ‘ 𝑝 ) ∈ No ↔ ( -us ‘ 𝑥 ) ∈ No ) ) |
14 |
|
breq1 |
⊢ ( 𝑝 = 𝑥 → ( 𝑝 <s 𝑞 ↔ 𝑥 <s 𝑞 ) ) |
15 |
12
|
breq2d |
⊢ ( 𝑝 = 𝑥 → ( ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ↔ ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑥 ) ) ) |
16 |
14 15
|
imbi12d |
⊢ ( 𝑝 = 𝑥 → ( ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ↔ ( 𝑥 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑥 ) ) ) ) |
17 |
13 16
|
anbi12d |
⊢ ( 𝑝 = 𝑥 → ( ( ( -us ‘ 𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) ↔ ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
18 |
11 17
|
imbi12d |
⊢ ( 𝑝 = 𝑥 → ( ( 𝑏 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) ) ↔ ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑥 ) ) ) ) ) ) |
19 |
|
fveq2 |
⊢ ( 𝑞 = 𝑦 → ( bday ‘ 𝑞 ) = ( bday ‘ 𝑦 ) ) |
20 |
19
|
uneq2d |
⊢ ( 𝑞 = 𝑦 → ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑞 ) ) = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ) |
21 |
20
|
eqeq2d |
⊢ ( 𝑞 = 𝑦 → ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑞 ) ) ↔ 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ) ) |
22 |
|
breq2 |
⊢ ( 𝑞 = 𝑦 → ( 𝑥 <s 𝑞 ↔ 𝑥 <s 𝑦 ) ) |
23 |
|
fveq2 |
⊢ ( 𝑞 = 𝑦 → ( -us ‘ 𝑞 ) = ( -us ‘ 𝑦 ) ) |
24 |
23
|
breq1d |
⊢ ( 𝑞 = 𝑦 → ( ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑥 ) ↔ ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) |
25 |
22 24
|
imbi12d |
⊢ ( 𝑞 = 𝑦 → ( ( 𝑥 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑥 ) ) ↔ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) |
26 |
25
|
anbi2d |
⊢ ( 𝑞 = 𝑦 → ( ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑥 ) ) ) ↔ ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
27 |
21 26
|
imbi12d |
⊢ ( 𝑞 = 𝑦 → ( ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑥 ) ) ) ) ↔ ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) ) |
28 |
18 27
|
cbvral2vw |
⊢ ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ( 𝑏 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) ) ↔ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
29 |
8 28
|
bitrdi |
⊢ ( 𝑎 = 𝑏 → ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ( 𝑎 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) ) ↔ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) ) |
30 |
|
raleq |
⊢ ( 𝑎 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ∀ 𝑏 ∈ 𝑎 ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ↔ ∀ 𝑏 ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) ) |
31 |
|
ralrot3 |
⊢ ( ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑏 ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ↔ ∀ 𝑏 ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
32 |
|
r19.23v |
⊢ ( ∀ 𝑏 ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ↔ ( ∃ 𝑏 ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
33 |
|
risset |
⊢ ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) ↔ ∃ 𝑏 ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ) |
34 |
33
|
imbi1i |
⊢ ( ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ↔ ( ∃ 𝑏 ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
35 |
32 34
|
bitr4i |
⊢ ( ∀ 𝑏 ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ↔ ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
36 |
35
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑏 ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ↔ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
37 |
31 36
|
bitr3i |
⊢ ( ∀ 𝑏 ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ↔ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
38 |
30 37
|
bitrdi |
⊢ ( 𝑎 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ∀ 𝑏 ∈ 𝑎 ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ↔ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) ) |
39 |
|
simpr |
⊢ ( ( ( 𝑝 ∈ No ∧ 𝑞 ∈ No ) ∧ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
40 |
|
simpll |
⊢ ( ( ( 𝑝 ∈ No ∧ 𝑞 ∈ No ) ∧ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) → 𝑝 ∈ No ) |
41 |
39 40
|
negsproplem3 |
⊢ ( ( ( 𝑝 ∈ No ∧ 𝑞 ∈ No ) ∧ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) → ( ( -us ‘ 𝑝 ) ∈ No ∧ ( -us “ ( R ‘ 𝑝 ) ) <<s { ( -us ‘ 𝑝 ) } ∧ { ( -us ‘ 𝑝 ) } <<s ( -us “ ( L ‘ 𝑝 ) ) ) ) |
42 |
41
|
simp1d |
⊢ ( ( ( 𝑝 ∈ No ∧ 𝑞 ∈ No ) ∧ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) → ( -us ‘ 𝑝 ) ∈ No ) |
43 |
|
simplr |
⊢ ( ( ( ( 𝑝 ∈ No ∧ 𝑞 ∈ No ) ∧ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) ∧ 𝑝 <s 𝑞 ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
44 |
|
simplll |
⊢ ( ( ( ( 𝑝 ∈ No ∧ 𝑞 ∈ No ) ∧ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) ∧ 𝑝 <s 𝑞 ) → 𝑝 ∈ No ) |
45 |
|
simpllr |
⊢ ( ( ( ( 𝑝 ∈ No ∧ 𝑞 ∈ No ) ∧ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) ∧ 𝑝 <s 𝑞 ) → 𝑞 ∈ No ) |
46 |
|
simpr |
⊢ ( ( ( ( 𝑝 ∈ No ∧ 𝑞 ∈ No ) ∧ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) ∧ 𝑝 <s 𝑞 ) → 𝑝 <s 𝑞 ) |
47 |
43 44 45 46
|
negsproplem7 |
⊢ ( ( ( ( 𝑝 ∈ No ∧ 𝑞 ∈ No ) ∧ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) ∧ 𝑝 <s 𝑞 ) → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) |
48 |
47
|
ex |
⊢ ( ( ( 𝑝 ∈ No ∧ 𝑞 ∈ No ) ∧ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) → ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) |
49 |
42 48
|
jca |
⊢ ( ( ( 𝑝 ∈ No ∧ 𝑞 ∈ No ) ∧ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) → ( ( -us ‘ 𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) ) |
50 |
49
|
expcom |
⊢ ( ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) → ( ( 𝑝 ∈ No ∧ 𝑞 ∈ No ) → ( ( -us ‘ 𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) ) ) |
51 |
38 50
|
biimtrdi |
⊢ ( 𝑎 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ∀ 𝑏 ∈ 𝑎 ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) → ( ( 𝑝 ∈ No ∧ 𝑞 ∈ No ) → ( ( -us ‘ 𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) ) ) ) |
52 |
51
|
com3l |
⊢ ( ∀ 𝑏 ∈ 𝑎 ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) → ( ( 𝑝 ∈ No ∧ 𝑞 ∈ No ) → ( 𝑎 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) ) ) ) |
53 |
52
|
ralrimivv |
⊢ ( ∀ 𝑏 ∈ 𝑎 ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) → ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ( 𝑎 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) ) ) |
54 |
53
|
a1i |
⊢ ( 𝑎 ∈ On → ( ∀ 𝑏 ∈ 𝑎 ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( 𝑏 = ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) → ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ( 𝑎 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) ) ) ) |
55 |
29 54
|
tfis2 |
⊢ ( 𝑎 ∈ On → ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ( 𝑎 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) ) ) |
56 |
|
fveq2 |
⊢ ( 𝑝 = 𝐴 → ( bday ‘ 𝑝 ) = ( bday ‘ 𝐴 ) ) |
57 |
56
|
uneq1d |
⊢ ( 𝑝 = 𝐴 → ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) = ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝑞 ) ) ) |
58 |
57
|
eqeq2d |
⊢ ( 𝑝 = 𝐴 → ( 𝑎 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) ↔ 𝑎 = ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝑞 ) ) ) ) |
59 |
|
fveq2 |
⊢ ( 𝑝 = 𝐴 → ( -us ‘ 𝑝 ) = ( -us ‘ 𝐴 ) ) |
60 |
59
|
eleq1d |
⊢ ( 𝑝 = 𝐴 → ( ( -us ‘ 𝑝 ) ∈ No ↔ ( -us ‘ 𝐴 ) ∈ No ) ) |
61 |
|
breq1 |
⊢ ( 𝑝 = 𝐴 → ( 𝑝 <s 𝑞 ↔ 𝐴 <s 𝑞 ) ) |
62 |
59
|
breq2d |
⊢ ( 𝑝 = 𝐴 → ( ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ↔ ( -us ‘ 𝑞 ) <s ( -us ‘ 𝐴 ) ) ) |
63 |
61 62
|
imbi12d |
⊢ ( 𝑝 = 𝐴 → ( ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ↔ ( 𝐴 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝐴 ) ) ) ) |
64 |
60 63
|
anbi12d |
⊢ ( 𝑝 = 𝐴 → ( ( ( -us ‘ 𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) ↔ ( ( -us ‘ 𝐴 ) ∈ No ∧ ( 𝐴 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝐴 ) ) ) ) ) |
65 |
58 64
|
imbi12d |
⊢ ( 𝑝 = 𝐴 → ( ( 𝑎 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) ) ↔ ( 𝑎 = ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝐴 ) ∈ No ∧ ( 𝐴 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝐴 ) ) ) ) ) ) |
66 |
|
fveq2 |
⊢ ( 𝑞 = 𝐵 → ( bday ‘ 𝑞 ) = ( bday ‘ 𝐵 ) ) |
67 |
66
|
uneq2d |
⊢ ( 𝑞 = 𝐵 → ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝑞 ) ) = ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ) |
68 |
67
|
eqeq2d |
⊢ ( 𝑞 = 𝐵 → ( 𝑎 = ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝑞 ) ) ↔ 𝑎 = ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ) ) |
69 |
|
breq2 |
⊢ ( 𝑞 = 𝐵 → ( 𝐴 <s 𝑞 ↔ 𝐴 <s 𝐵 ) ) |
70 |
|
fveq2 |
⊢ ( 𝑞 = 𝐵 → ( -us ‘ 𝑞 ) = ( -us ‘ 𝐵 ) ) |
71 |
70
|
breq1d |
⊢ ( 𝑞 = 𝐵 → ( ( -us ‘ 𝑞 ) <s ( -us ‘ 𝐴 ) ↔ ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) |
72 |
69 71
|
imbi12d |
⊢ ( 𝑞 = 𝐵 → ( ( 𝐴 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝐴 ) ) ↔ ( 𝐴 <s 𝐵 → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) ) |
73 |
72
|
anbi2d |
⊢ ( 𝑞 = 𝐵 → ( ( ( -us ‘ 𝐴 ) ∈ No ∧ ( 𝐴 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝐴 ) ) ) ↔ ( ( -us ‘ 𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) ) ) |
74 |
68 73
|
imbi12d |
⊢ ( 𝑞 = 𝐵 → ( ( 𝑎 = ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝐴 ) ∈ No ∧ ( 𝐴 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝐴 ) ) ) ) ↔ ( 𝑎 = ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) ) ) ) |
75 |
65 74
|
rspc2v |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ( 𝑎 = ( ( bday ‘ 𝑝 ) ∪ ( bday ‘ 𝑞 ) ) → ( ( -us ‘ 𝑝 ) ∈ No ∧ ( 𝑝 <s 𝑞 → ( -us ‘ 𝑞 ) <s ( -us ‘ 𝑝 ) ) ) ) → ( 𝑎 = ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) ) ) ) |
76 |
55 75
|
syl5com |
⊢ ( 𝑎 ∈ On → ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑎 = ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) ) ) ) |
77 |
76
|
com23 |
⊢ ( 𝑎 ∈ On → ( 𝑎 = ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( -us ‘ 𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) ) ) ) |
78 |
77
|
rexlimiv |
⊢ ( ∃ 𝑎 ∈ On 𝑎 = ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( -us ‘ 𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) ) ) |
79 |
5 78
|
ax-mp |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( -us ‘ 𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) ) |