Metamath Proof Explorer


Theorem negsproplem1

Description: Lemma for surreal negation. We prove a pair of properties of surreal negation simultaneously. First, we instantiate some quantifiers. (Contributed by Scott Fenton, 2-Feb-2025)

Ref Expression
Hypotheses negsproplem.1 ( 𝜑 → ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
negsproplem1.1 ( 𝜑𝑋 No )
negsproplem1.2 ( 𝜑𝑌 No )
negsproplem1.3 ( 𝜑 → ( ( bday 𝑋 ) ∪ ( bday 𝑌 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) )
Assertion negsproplem1 ( 𝜑 → ( ( -us𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑌 → ( -us𝑌 ) <s ( -us𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 negsproplem.1 ( 𝜑 → ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
2 negsproplem1.1 ( 𝜑𝑋 No )
3 negsproplem1.2 ( 𝜑𝑌 No )
4 negsproplem1.3 ( 𝜑 → ( ( bday 𝑋 ) ∪ ( bday 𝑌 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) )
5 2 3 jca ( 𝜑 → ( 𝑋 No 𝑌 No ) )
6 fveq2 ( 𝑥 = 𝑋 → ( bday 𝑥 ) = ( bday 𝑋 ) )
7 6 uneq1d ( 𝑥 = 𝑋 → ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) = ( ( bday 𝑋 ) ∪ ( bday 𝑦 ) ) )
8 7 eleq1d ( 𝑥 = 𝑋 → ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) ↔ ( ( bday 𝑋 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) ) )
9 fveq2 ( 𝑥 = 𝑋 → ( -us𝑥 ) = ( -us𝑋 ) )
10 9 eleq1d ( 𝑥 = 𝑋 → ( ( -us𝑥 ) ∈ No ↔ ( -us𝑋 ) ∈ No ) )
11 breq1 ( 𝑥 = 𝑋 → ( 𝑥 <s 𝑦𝑋 <s 𝑦 ) )
12 9 breq2d ( 𝑥 = 𝑋 → ( ( -us𝑦 ) <s ( -us𝑥 ) ↔ ( -us𝑦 ) <s ( -us𝑋 ) ) )
13 11 12 imbi12d ( 𝑥 = 𝑋 → ( ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ↔ ( 𝑋 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑋 ) ) ) )
14 10 13 anbi12d ( 𝑥 = 𝑋 → ( ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ↔ ( ( -us𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑋 ) ) ) ) )
15 8 14 imbi12d ( 𝑥 = 𝑋 → ( ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ↔ ( ( ( bday 𝑋 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) → ( ( -us𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑋 ) ) ) ) ) )
16 fveq2 ( 𝑦 = 𝑌 → ( bday 𝑦 ) = ( bday 𝑌 ) )
17 16 uneq2d ( 𝑦 = 𝑌 → ( ( bday 𝑋 ) ∪ ( bday 𝑦 ) ) = ( ( bday 𝑋 ) ∪ ( bday 𝑌 ) ) )
18 17 eleq1d ( 𝑦 = 𝑌 → ( ( ( bday 𝑋 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) ↔ ( ( bday 𝑋 ) ∪ ( bday 𝑌 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) ) )
19 breq2 ( 𝑦 = 𝑌 → ( 𝑋 <s 𝑦𝑋 <s 𝑌 ) )
20 fveq2 ( 𝑦 = 𝑌 → ( -us𝑦 ) = ( -us𝑌 ) )
21 20 breq1d ( 𝑦 = 𝑌 → ( ( -us𝑦 ) <s ( -us𝑋 ) ↔ ( -us𝑌 ) <s ( -us𝑋 ) ) )
22 19 21 imbi12d ( 𝑦 = 𝑌 → ( ( 𝑋 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑋 ) ) ↔ ( 𝑋 <s 𝑌 → ( -us𝑌 ) <s ( -us𝑋 ) ) ) )
23 22 anbi2d ( 𝑦 = 𝑌 → ( ( ( -us𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑋 ) ) ) ↔ ( ( -us𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑌 → ( -us𝑌 ) <s ( -us𝑋 ) ) ) ) )
24 18 23 imbi12d ( 𝑦 = 𝑌 → ( ( ( ( bday 𝑋 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) → ( ( -us𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑋 ) ) ) ) ↔ ( ( ( bday 𝑋 ) ∪ ( bday 𝑌 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) → ( ( -us𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑌 → ( -us𝑌 ) <s ( -us𝑋 ) ) ) ) ) )
25 15 24 rspc2v ( ( 𝑋 No 𝑌 No ) → ( ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) → ( ( ( bday 𝑋 ) ∪ ( bday 𝑌 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) → ( ( -us𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑌 → ( -us𝑌 ) <s ( -us𝑋 ) ) ) ) ) )
26 5 1 4 25 syl3c ( 𝜑 → ( ( -us𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑌 → ( -us𝑌 ) <s ( -us𝑋 ) ) ) )