Step |
Hyp |
Ref |
Expression |
1 |
|
negsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
2 |
|
negsproplem1.1 |
⊢ ( 𝜑 → 𝑋 ∈ No ) |
3 |
|
negsproplem1.2 |
⊢ ( 𝜑 → 𝑌 ∈ No ) |
4 |
|
negsproplem1.3 |
⊢ ( 𝜑 → ( ( bday ‘ 𝑋 ) ∪ ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ) |
5 |
2 3
|
jca |
⊢ ( 𝜑 → ( 𝑋 ∈ No ∧ 𝑌 ∈ No ) ) |
6 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( bday ‘ 𝑥 ) = ( bday ‘ 𝑋 ) ) |
7 |
6
|
uneq1d |
⊢ ( 𝑥 = 𝑋 → ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) = ( ( bday ‘ 𝑋 ) ∪ ( bday ‘ 𝑦 ) ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑥 = 𝑋 → ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ↔ ( ( bday ‘ 𝑋 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( -us ‘ 𝑥 ) = ( -us ‘ 𝑋 ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑥 = 𝑋 → ( ( -us ‘ 𝑥 ) ∈ No ↔ ( -us ‘ 𝑋 ) ∈ No ) ) |
11 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 <s 𝑦 ↔ 𝑋 <s 𝑦 ) ) |
12 |
9
|
breq2d |
⊢ ( 𝑥 = 𝑋 → ( ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ↔ ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑋 ) ) ) |
13 |
11 12
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ↔ ( 𝑋 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑋 ) ) ) ) |
14 |
10 13
|
anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ↔ ( ( -us ‘ 𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑋 ) ) ) ) ) |
15 |
8 14
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ↔ ( ( ( bday ‘ 𝑋 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑋 ) ) ) ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( bday ‘ 𝑦 ) = ( bday ‘ 𝑌 ) ) |
17 |
16
|
uneq2d |
⊢ ( 𝑦 = 𝑌 → ( ( bday ‘ 𝑋 ) ∪ ( bday ‘ 𝑦 ) ) = ( ( bday ‘ 𝑋 ) ∪ ( bday ‘ 𝑌 ) ) ) |
18 |
17
|
eleq1d |
⊢ ( 𝑦 = 𝑌 → ( ( ( bday ‘ 𝑋 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ↔ ( ( bday ‘ 𝑋 ) ∪ ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ) ) |
19 |
|
breq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 <s 𝑦 ↔ 𝑋 <s 𝑌 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( -us ‘ 𝑦 ) = ( -us ‘ 𝑌 ) ) |
21 |
20
|
breq1d |
⊢ ( 𝑦 = 𝑌 → ( ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑋 ) ↔ ( -us ‘ 𝑌 ) <s ( -us ‘ 𝑋 ) ) ) |
22 |
19 21
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑋 ) ) ↔ ( 𝑋 <s 𝑌 → ( -us ‘ 𝑌 ) <s ( -us ‘ 𝑋 ) ) ) ) |
23 |
22
|
anbi2d |
⊢ ( 𝑦 = 𝑌 → ( ( ( -us ‘ 𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑋 ) ) ) ↔ ( ( -us ‘ 𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑌 → ( -us ‘ 𝑌 ) <s ( -us ‘ 𝑋 ) ) ) ) ) |
24 |
18 23
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( ( ( bday ‘ 𝑋 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑋 ) ) ) ) ↔ ( ( ( bday ‘ 𝑋 ) ∪ ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑌 → ( -us ‘ 𝑌 ) <s ( -us ‘ 𝑋 ) ) ) ) ) ) |
25 |
15 24
|
rspc2v |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ) → ( ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) → ( ( ( bday ‘ 𝑋 ) ∪ ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑌 → ( -us ‘ 𝑌 ) <s ( -us ‘ 𝑋 ) ) ) ) ) ) |
26 |
5 1 4 25
|
syl3c |
⊢ ( 𝜑 → ( ( -us ‘ 𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑌 → ( -us ‘ 𝑌 ) <s ( -us ‘ 𝑋 ) ) ) ) |