Step |
Hyp |
Ref |
Expression |
1 |
|
negsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
2 |
|
negsproplem2.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
3 |
|
negsfn |
⊢ -us Fn No |
4 |
|
fnfun |
⊢ ( -us Fn No → Fun -us ) |
5 |
3 4
|
ax-mp |
⊢ Fun -us |
6 |
|
fvex |
⊢ ( R ‘ 𝐴 ) ∈ V |
7 |
6
|
funimaex |
⊢ ( Fun -us → ( -us “ ( R ‘ 𝐴 ) ) ∈ V ) |
8 |
5 7
|
mp1i |
⊢ ( 𝜑 → ( -us “ ( R ‘ 𝐴 ) ) ∈ V ) |
9 |
|
fvex |
⊢ ( L ‘ 𝐴 ) ∈ V |
10 |
9
|
funimaex |
⊢ ( Fun -us → ( -us “ ( L ‘ 𝐴 ) ) ∈ V ) |
11 |
5 10
|
mp1i |
⊢ ( 𝜑 → ( -us “ ( L ‘ 𝐴 ) ) ∈ V ) |
12 |
|
rightssold |
⊢ ( R ‘ 𝐴 ) ⊆ ( O ‘ ( bday ‘ 𝐴 ) ) |
13 |
|
imass2 |
⊢ ( ( R ‘ 𝐴 ) ⊆ ( O ‘ ( bday ‘ 𝐴 ) ) → ( -us “ ( R ‘ 𝐴 ) ) ⊆ ( -us “ ( O ‘ ( bday ‘ 𝐴 ) ) ) ) |
14 |
12 13
|
ax-mp |
⊢ ( -us “ ( R ‘ 𝐴 ) ) ⊆ ( -us “ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
15 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
16 |
|
oldssno |
⊢ ( O ‘ ( bday ‘ 𝐴 ) ) ⊆ No |
17 |
16
|
sseli |
⊢ ( 𝑎 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) → 𝑎 ∈ No ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) → 𝑎 ∈ No ) |
19 |
|
0sno |
⊢ 0s ∈ No |
20 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) → 0s ∈ No ) |
21 |
|
bday0s |
⊢ ( bday ‘ 0s ) = ∅ |
22 |
21
|
uneq2i |
⊢ ( ( bday ‘ 𝑎 ) ∪ ( bday ‘ 0s ) ) = ( ( bday ‘ 𝑎 ) ∪ ∅ ) |
23 |
|
un0 |
⊢ ( ( bday ‘ 𝑎 ) ∪ ∅ ) = ( bday ‘ 𝑎 ) |
24 |
22 23
|
eqtri |
⊢ ( ( bday ‘ 𝑎 ) ∪ ( bday ‘ 0s ) ) = ( bday ‘ 𝑎 ) |
25 |
|
oldbdayim |
⊢ ( 𝑎 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) → ( bday ‘ 𝑎 ) ∈ ( bday ‘ 𝐴 ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) → ( bday ‘ 𝑎 ) ∈ ( bday ‘ 𝐴 ) ) |
27 |
|
elun1 |
⊢ ( ( bday ‘ 𝑎 ) ∈ ( bday ‘ 𝐴 ) → ( bday ‘ 𝑎 ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ) |
28 |
26 27
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) → ( bday ‘ 𝑎 ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ) |
29 |
24 28
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) → ( ( bday ‘ 𝑎 ) ∪ ( bday ‘ 0s ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ) |
30 |
15 18 20 29
|
negsproplem1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) → ( ( -us ‘ 𝑎 ) ∈ No ∧ ( 𝑎 <s 0s → ( -us ‘ 0s ) <s ( -us ‘ 𝑎 ) ) ) ) |
31 |
30
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) → ( -us ‘ 𝑎 ) ∈ No ) |
32 |
31
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ( -us ‘ 𝑎 ) ∈ No ) |
33 |
3
|
fndmi |
⊢ dom -us = No |
34 |
16 33
|
sseqtrri |
⊢ ( O ‘ ( bday ‘ 𝐴 ) ) ⊆ dom -us |
35 |
|
funimass4 |
⊢ ( ( Fun -us ∧ ( O ‘ ( bday ‘ 𝐴 ) ) ⊆ dom -us ) → ( ( -us “ ( O ‘ ( bday ‘ 𝐴 ) ) ) ⊆ No ↔ ∀ 𝑎 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ( -us ‘ 𝑎 ) ∈ No ) ) |
36 |
5 34 35
|
mp2an |
⊢ ( ( -us “ ( O ‘ ( bday ‘ 𝐴 ) ) ) ⊆ No ↔ ∀ 𝑎 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ( -us ‘ 𝑎 ) ∈ No ) |
37 |
32 36
|
sylibr |
⊢ ( 𝜑 → ( -us “ ( O ‘ ( bday ‘ 𝐴 ) ) ) ⊆ No ) |
38 |
14 37
|
sstrid |
⊢ ( 𝜑 → ( -us “ ( R ‘ 𝐴 ) ) ⊆ No ) |
39 |
|
leftssold |
⊢ ( L ‘ 𝐴 ) ⊆ ( O ‘ ( bday ‘ 𝐴 ) ) |
40 |
|
imass2 |
⊢ ( ( L ‘ 𝐴 ) ⊆ ( O ‘ ( bday ‘ 𝐴 ) ) → ( -us “ ( L ‘ 𝐴 ) ) ⊆ ( -us “ ( O ‘ ( bday ‘ 𝐴 ) ) ) ) |
41 |
39 40
|
ax-mp |
⊢ ( -us “ ( L ‘ 𝐴 ) ) ⊆ ( -us “ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
42 |
41 37
|
sstrid |
⊢ ( 𝜑 → ( -us “ ( L ‘ 𝐴 ) ) ⊆ No ) |
43 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
44 |
|
fvelimab |
⊢ ( ( -us Fn No ∧ ( R ‘ 𝐴 ) ⊆ No ) → ( 𝑎 ∈ ( -us “ ( R ‘ 𝐴 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ( -us ‘ 𝑥𝑅 ) = 𝑎 ) ) |
45 |
3 43 44
|
mp2an |
⊢ ( 𝑎 ∈ ( -us “ ( R ‘ 𝐴 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ( -us ‘ 𝑥𝑅 ) = 𝑎 ) |
46 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
47 |
|
fvelimab |
⊢ ( ( -us Fn No ∧ ( L ‘ 𝐴 ) ⊆ No ) → ( 𝑏 ∈ ( -us “ ( L ‘ 𝐴 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ( -us ‘ 𝑥𝐿 ) = 𝑏 ) ) |
48 |
3 46 47
|
mp2an |
⊢ ( 𝑏 ∈ ( -us “ ( L ‘ 𝐴 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ( -us ‘ 𝑥𝐿 ) = 𝑏 ) |
49 |
45 48
|
anbi12i |
⊢ ( ( 𝑎 ∈ ( -us “ ( R ‘ 𝐴 ) ) ∧ 𝑏 ∈ ( -us “ ( L ‘ 𝐴 ) ) ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ( -us ‘ 𝑥𝑅 ) = 𝑎 ∧ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ( -us ‘ 𝑥𝐿 ) = 𝑏 ) ) |
50 |
|
reeanv |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ( ( -us ‘ 𝑥𝑅 ) = 𝑎 ∧ ( -us ‘ 𝑥𝐿 ) = 𝑏 ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ( -us ‘ 𝑥𝑅 ) = 𝑎 ∧ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ( -us ‘ 𝑥𝐿 ) = 𝑏 ) ) |
51 |
49 50
|
bitr4i |
⊢ ( ( 𝑎 ∈ ( -us “ ( R ‘ 𝐴 ) ) ∧ 𝑏 ∈ ( -us “ ( L ‘ 𝐴 ) ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ( ( -us ‘ 𝑥𝑅 ) = 𝑎 ∧ ( -us ‘ 𝑥𝐿 ) = 𝑏 ) ) |
52 |
|
lltropt |
⊢ ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) |
53 |
52
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) ) → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) ) |
54 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) ) → 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) |
55 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) ) → 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) |
56 |
53 54 55
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) ) → 𝑥𝐿 <s 𝑥𝑅 ) |
57 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
58 |
46
|
sseli |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) → 𝑥𝐿 ∈ No ) |
59 |
58
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) ) → 𝑥𝐿 ∈ No ) |
60 |
43
|
sseli |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) → 𝑥𝑅 ∈ No ) |
61 |
60
|
adantr |
⊢ ( ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) → 𝑥𝑅 ∈ No ) |
62 |
61
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) ) → 𝑥𝑅 ∈ No ) |
63 |
39
|
sseli |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) → 𝑥𝐿 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
64 |
63
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) ) → 𝑥𝐿 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
65 |
|
oldbdayim |
⊢ ( 𝑥𝐿 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) → ( bday ‘ 𝑥𝐿 ) ∈ ( bday ‘ 𝐴 ) ) |
66 |
64 65
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) ) → ( bday ‘ 𝑥𝐿 ) ∈ ( bday ‘ 𝐴 ) ) |
67 |
12
|
a1i |
⊢ ( 𝜑 → ( R ‘ 𝐴 ) ⊆ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
68 |
67
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 𝑥𝑅 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
69 |
68
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) ) → 𝑥𝑅 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
70 |
|
oldbdayim |
⊢ ( 𝑥𝑅 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) → ( bday ‘ 𝑥𝑅 ) ∈ ( bday ‘ 𝐴 ) ) |
71 |
69 70
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) ) → ( bday ‘ 𝑥𝑅 ) ∈ ( bday ‘ 𝐴 ) ) |
72 |
|
bdayelon |
⊢ ( bday ‘ 𝑥𝐿 ) ∈ On |
73 |
|
bdayelon |
⊢ ( bday ‘ 𝑥𝑅 ) ∈ On |
74 |
|
bdayelon |
⊢ ( bday ‘ 𝐴 ) ∈ On |
75 |
|
onunel |
⊢ ( ( ( bday ‘ 𝑥𝐿 ) ∈ On ∧ ( bday ‘ 𝑥𝑅 ) ∈ On ∧ ( bday ‘ 𝐴 ) ∈ On ) → ( ( ( bday ‘ 𝑥𝐿 ) ∪ ( bday ‘ 𝑥𝑅 ) ) ∈ ( bday ‘ 𝐴 ) ↔ ( ( bday ‘ 𝑥𝐿 ) ∈ ( bday ‘ 𝐴 ) ∧ ( bday ‘ 𝑥𝑅 ) ∈ ( bday ‘ 𝐴 ) ) ) ) |
76 |
72 73 74 75
|
mp3an |
⊢ ( ( ( bday ‘ 𝑥𝐿 ) ∪ ( bday ‘ 𝑥𝑅 ) ) ∈ ( bday ‘ 𝐴 ) ↔ ( ( bday ‘ 𝑥𝐿 ) ∈ ( bday ‘ 𝐴 ) ∧ ( bday ‘ 𝑥𝑅 ) ∈ ( bday ‘ 𝐴 ) ) ) |
77 |
66 71 76
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) ) → ( ( bday ‘ 𝑥𝐿 ) ∪ ( bday ‘ 𝑥𝑅 ) ) ∈ ( bday ‘ 𝐴 ) ) |
78 |
|
elun1 |
⊢ ( ( ( bday ‘ 𝑥𝐿 ) ∪ ( bday ‘ 𝑥𝑅 ) ) ∈ ( bday ‘ 𝐴 ) → ( ( bday ‘ 𝑥𝐿 ) ∪ ( bday ‘ 𝑥𝑅 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ) |
79 |
77 78
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) ) → ( ( bday ‘ 𝑥𝐿 ) ∪ ( bday ‘ 𝑥𝑅 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ) |
80 |
57 59 62 79
|
negsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) ) → ( ( -us ‘ 𝑥𝐿 ) ∈ No ∧ ( 𝑥𝐿 <s 𝑥𝑅 → ( -us ‘ 𝑥𝑅 ) <s ( -us ‘ 𝑥𝐿 ) ) ) ) |
81 |
80
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) ) → ( 𝑥𝐿 <s 𝑥𝑅 → ( -us ‘ 𝑥𝑅 ) <s ( -us ‘ 𝑥𝐿 ) ) ) |
82 |
56 81
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) ) → ( -us ‘ 𝑥𝑅 ) <s ( -us ‘ 𝑥𝐿 ) ) |
83 |
|
breq12 |
⊢ ( ( ( -us ‘ 𝑥𝑅 ) = 𝑎 ∧ ( -us ‘ 𝑥𝐿 ) = 𝑏 ) → ( ( -us ‘ 𝑥𝑅 ) <s ( -us ‘ 𝑥𝐿 ) ↔ 𝑎 <s 𝑏 ) ) |
84 |
82 83
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) ) → ( ( ( -us ‘ 𝑥𝑅 ) = 𝑎 ∧ ( -us ‘ 𝑥𝐿 ) = 𝑏 ) → 𝑎 <s 𝑏 ) ) |
85 |
84
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ( ( -us ‘ 𝑥𝑅 ) = 𝑎 ∧ ( -us ‘ 𝑥𝐿 ) = 𝑏 ) → 𝑎 <s 𝑏 ) ) |
86 |
51 85
|
biimtrid |
⊢ ( 𝜑 → ( ( 𝑎 ∈ ( -us “ ( R ‘ 𝐴 ) ) ∧ 𝑏 ∈ ( -us “ ( L ‘ 𝐴 ) ) ) → 𝑎 <s 𝑏 ) ) |
87 |
86
|
3impib |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( -us “ ( R ‘ 𝐴 ) ) ∧ 𝑏 ∈ ( -us “ ( L ‘ 𝐴 ) ) ) → 𝑎 <s 𝑏 ) |
88 |
8 11 38 42 87
|
ssltd |
⊢ ( 𝜑 → ( -us “ ( R ‘ 𝐴 ) ) <<s ( -us “ ( L ‘ 𝐴 ) ) ) |