Step |
Hyp |
Ref |
Expression |
1 |
|
negsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
2 |
|
negsproplem2.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
3 |
1 2
|
negsproplem2 |
⊢ ( 𝜑 → ( -us “ ( R ‘ 𝐴 ) ) <<s ( -us “ ( L ‘ 𝐴 ) ) ) |
4 |
|
scutcut |
⊢ ( ( -us “ ( R ‘ 𝐴 ) ) <<s ( -us “ ( L ‘ 𝐴 ) ) → ( ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) ∈ No ∧ ( -us “ ( R ‘ 𝐴 ) ) <<s { ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) } ∧ { ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ) ) |
5 |
3 4
|
syl |
⊢ ( 𝜑 → ( ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) ∈ No ∧ ( -us “ ( R ‘ 𝐴 ) ) <<s { ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) } ∧ { ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ) ) |
6 |
|
negsval |
⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) = ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → ( -us ‘ 𝐴 ) = ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝜑 → ( ( -us ‘ 𝐴 ) ∈ No ↔ ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) ∈ No ) ) |
9 |
7
|
sneqd |
⊢ ( 𝜑 → { ( -us ‘ 𝐴 ) } = { ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) } ) |
10 |
9
|
breq2d |
⊢ ( 𝜑 → ( ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us ‘ 𝐴 ) } ↔ ( -us “ ( R ‘ 𝐴 ) ) <<s { ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) } ) ) |
11 |
9
|
breq1d |
⊢ ( 𝜑 → ( { ( -us ‘ 𝐴 ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ↔ { ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ) ) |
12 |
8 10 11
|
3anbi123d |
⊢ ( 𝜑 → ( ( ( -us ‘ 𝐴 ) ∈ No ∧ ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us ‘ 𝐴 ) } ∧ { ( -us ‘ 𝐴 ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ) ↔ ( ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) ∈ No ∧ ( -us “ ( R ‘ 𝐴 ) ) <<s { ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) } ∧ { ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ) ) ) |
13 |
5 12
|
mpbird |
⊢ ( 𝜑 → ( ( -us ‘ 𝐴 ) ∈ No ∧ ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us ‘ 𝐴 ) } ∧ { ( -us ‘ 𝐴 ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ) ) |