| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
| 2 |
|
negsproplem4.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 3 |
|
negsproplem4.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 4 |
|
negsproplem4.3 |
⊢ ( 𝜑 → 𝐴 <s 𝐵 ) |
| 5 |
|
negsproplem4.4 |
⊢ ( 𝜑 → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) |
| 6 |
|
uncom |
⊢ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) = ( ( bday ‘ 𝐵 ) ∪ ( bday ‘ 𝐴 ) ) |
| 7 |
6
|
eleq2i |
⊢ ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ↔ ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐵 ) ∪ ( bday ‘ 𝐴 ) ) ) |
| 8 |
7
|
imbi1i |
⊢ ( ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ↔ ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐵 ) ∪ ( bday ‘ 𝐴 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
| 9 |
8
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ↔ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐵 ) ∪ ( bday ‘ 𝐴 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
| 10 |
1 9
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐵 ) ∪ ( bday ‘ 𝐴 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
| 11 |
10 3
|
negsproplem3 |
⊢ ( 𝜑 → ( ( -us ‘ 𝐵 ) ∈ No ∧ ( -us “ ( R ‘ 𝐵 ) ) <<s { ( -us ‘ 𝐵 ) } ∧ { ( -us ‘ 𝐵 ) } <<s ( -us “ ( L ‘ 𝐵 ) ) ) ) |
| 12 |
11
|
simp3d |
⊢ ( 𝜑 → { ( -us ‘ 𝐵 ) } <<s ( -us “ ( L ‘ 𝐵 ) ) ) |
| 13 |
|
fvex |
⊢ ( -us ‘ 𝐵 ) ∈ V |
| 14 |
13
|
snid |
⊢ ( -us ‘ 𝐵 ) ∈ { ( -us ‘ 𝐵 ) } |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → ( -us ‘ 𝐵 ) ∈ { ( -us ‘ 𝐵 ) } ) |
| 16 |
|
negsfn |
⊢ -us Fn No |
| 17 |
|
leftssno |
⊢ ( L ‘ 𝐵 ) ⊆ No |
| 18 |
|
bdayelon |
⊢ ( bday ‘ 𝐵 ) ∈ On |
| 19 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝐵 ) ∈ On ∧ 𝐴 ∈ No ) → ( 𝐴 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ↔ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) ) |
| 20 |
18 2 19
|
sylancr |
⊢ ( 𝜑 → ( 𝐴 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ↔ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) ) |
| 21 |
5 20
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ) |
| 22 |
|
breq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 <s 𝐵 ↔ 𝐴 <s 𝐵 ) ) |
| 23 |
|
leftval |
⊢ ( L ‘ 𝐵 ) = { 𝑎 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ∣ 𝑎 <s 𝐵 } |
| 24 |
22 23
|
elrab2 |
⊢ ( 𝐴 ∈ ( L ‘ 𝐵 ) ↔ ( 𝐴 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ∧ 𝐴 <s 𝐵 ) ) |
| 25 |
21 4 24
|
sylanbrc |
⊢ ( 𝜑 → 𝐴 ∈ ( L ‘ 𝐵 ) ) |
| 26 |
|
fnfvima |
⊢ ( ( -us Fn No ∧ ( L ‘ 𝐵 ) ⊆ No ∧ 𝐴 ∈ ( L ‘ 𝐵 ) ) → ( -us ‘ 𝐴 ) ∈ ( -us “ ( L ‘ 𝐵 ) ) ) |
| 27 |
16 17 25 26
|
mp3an12i |
⊢ ( 𝜑 → ( -us ‘ 𝐴 ) ∈ ( -us “ ( L ‘ 𝐵 ) ) ) |
| 28 |
12 15 27
|
ssltsepcd |
⊢ ( 𝜑 → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) |