Step |
Hyp |
Ref |
Expression |
1 |
|
negsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
2 |
|
negsproplem4.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
3 |
|
negsproplem4.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
4 |
|
negsproplem4.3 |
⊢ ( 𝜑 → 𝐴 <s 𝐵 ) |
5 |
|
negsproplem5.4 |
⊢ ( 𝜑 → ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) |
6 |
1 2
|
negsproplem3 |
⊢ ( 𝜑 → ( ( -us ‘ 𝐴 ) ∈ No ∧ ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us ‘ 𝐴 ) } ∧ { ( -us ‘ 𝐴 ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ) ) |
7 |
6
|
simp2d |
⊢ ( 𝜑 → ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us ‘ 𝐴 ) } ) |
8 |
|
negsfn |
⊢ -us Fn No |
9 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
10 |
|
bdayelon |
⊢ ( bday ‘ 𝐴 ) ∈ On |
11 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ 𝐵 ∈ No ) → ( 𝐵 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ↔ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) ) |
12 |
10 3 11
|
sylancr |
⊢ ( 𝜑 → ( 𝐵 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ↔ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) ) |
13 |
5 12
|
mpbird |
⊢ ( 𝜑 → 𝐵 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
14 |
|
breq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐴 <s 𝑏 ↔ 𝐴 <s 𝐵 ) ) |
15 |
|
rightval |
⊢ ( R ‘ 𝐴 ) = { 𝑏 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝐴 <s 𝑏 } |
16 |
14 15
|
elrab2 |
⊢ ( 𝐵 ∈ ( R ‘ 𝐴 ) ↔ ( 𝐵 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∧ 𝐴 <s 𝐵 ) ) |
17 |
13 4 16
|
sylanbrc |
⊢ ( 𝜑 → 𝐵 ∈ ( R ‘ 𝐴 ) ) |
18 |
|
fnfvima |
⊢ ( ( -us Fn No ∧ ( R ‘ 𝐴 ) ⊆ No ∧ 𝐵 ∈ ( R ‘ 𝐴 ) ) → ( -us ‘ 𝐵 ) ∈ ( -us “ ( R ‘ 𝐴 ) ) ) |
19 |
8 9 17 18
|
mp3an12i |
⊢ ( 𝜑 → ( -us ‘ 𝐵 ) ∈ ( -us “ ( R ‘ 𝐴 ) ) ) |
20 |
|
fvex |
⊢ ( -us ‘ 𝐴 ) ∈ V |
21 |
20
|
snid |
⊢ ( -us ‘ 𝐴 ) ∈ { ( -us ‘ 𝐴 ) } |
22 |
21
|
a1i |
⊢ ( 𝜑 → ( -us ‘ 𝐴 ) ∈ { ( -us ‘ 𝐴 ) } ) |
23 |
7 19 22
|
ssltsepcd |
⊢ ( 𝜑 → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) |