Metamath Proof Explorer


Theorem negsproplem6

Description: Lemma for surreal negation. Show the second half of the inductive hypothesis when A is the same age as B . (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Hypotheses negsproplem.1 ( 𝜑 → ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
negsproplem4.1 ( 𝜑𝐴 No )
negsproplem4.2 ( 𝜑𝐵 No )
negsproplem4.3 ( 𝜑𝐴 <s 𝐵 )
negsproplem6.4 ( 𝜑 → ( bday 𝐴 ) = ( bday 𝐵 ) )
Assertion negsproplem6 ( 𝜑 → ( -us𝐵 ) <s ( -us𝐴 ) )

Proof

Step Hyp Ref Expression
1 negsproplem.1 ( 𝜑 → ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
2 negsproplem4.1 ( 𝜑𝐴 No )
3 negsproplem4.2 ( 𝜑𝐵 No )
4 negsproplem4.3 ( 𝜑𝐴 <s 𝐵 )
5 negsproplem6.4 ( 𝜑 → ( bday 𝐴 ) = ( bday 𝐵 ) )
6 nodense ( ( ( 𝐴 No 𝐵 No ) ∧ ( ( bday 𝐴 ) = ( bday 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ∃ 𝑑 No ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) )
7 2 3 5 4 6 syl22anc ( 𝜑 → ∃ 𝑑 No ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) )
8 uncom ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) = ( ( bday 𝐵 ) ∪ ( bday 𝐴 ) )
9 8 eleq2i ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) ↔ ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐵 ) ∪ ( bday 𝐴 ) ) )
10 9 imbi1i ( ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ↔ ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐵 ) ∪ ( bday 𝐴 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
11 10 2ralbii ( ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) ↔ ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐵 ) ∪ ( bday 𝐴 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
12 1 11 sylib ( 𝜑 → ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐵 ) ∪ ( bday 𝐴 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
13 12 3 negsproplem3 ( 𝜑 → ( ( -us𝐵 ) ∈ No ∧ ( -us “ ( R ‘ 𝐵 ) ) <<s { ( -us𝐵 ) } ∧ { ( -us𝐵 ) } <<s ( -us “ ( L ‘ 𝐵 ) ) ) )
14 13 simp1d ( 𝜑 → ( -us𝐵 ) ∈ No )
15 14 adantr ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → ( -us𝐵 ) ∈ No )
16 1 adantr ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
17 simprl ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → 𝑑 No )
18 0sno 0s No
19 18 a1i ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → 0s No )
20 bday0s ( bday ‘ 0s ) = ∅
21 20 uneq2i ( ( bday 𝑑 ) ∪ ( bday ‘ 0s ) ) = ( ( bday 𝑑 ) ∪ ∅ )
22 un0 ( ( bday 𝑑 ) ∪ ∅ ) = ( bday 𝑑 )
23 21 22 eqtri ( ( bday 𝑑 ) ∪ ( bday ‘ 0s ) ) = ( bday 𝑑 )
24 simprr1 ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → ( bday 𝑑 ) ∈ ( bday 𝐴 ) )
25 elun1 ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) → ( bday 𝑑 ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) )
26 24 25 syl ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → ( bday 𝑑 ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) )
27 23 26 eqeltrid ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → ( ( bday 𝑑 ) ∪ ( bday ‘ 0s ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday 𝐵 ) ) )
28 16 17 19 27 negsproplem1 ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → ( ( -us𝑑 ) ∈ No ∧ ( 𝑑 <s 0s → ( -us ‘ 0s ) <s ( -us𝑑 ) ) ) )
29 28 simpld ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → ( -us𝑑 ) ∈ No )
30 1 2 negsproplem3 ( 𝜑 → ( ( -us𝐴 ) ∈ No ∧ ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us𝐴 ) } ∧ { ( -us𝐴 ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ) )
31 30 simp1d ( 𝜑 → ( -us𝐴 ) ∈ No )
32 31 adantr ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → ( -us𝐴 ) ∈ No )
33 13 simp3d ( 𝜑 → { ( -us𝐵 ) } <<s ( -us “ ( L ‘ 𝐵 ) ) )
34 33 adantr ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → { ( -us𝐵 ) } <<s ( -us “ ( L ‘ 𝐵 ) ) )
35 fvex ( -us𝐵 ) ∈ V
36 35 snid ( -us𝐵 ) ∈ { ( -us𝐵 ) }
37 36 a1i ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → ( -us𝐵 ) ∈ { ( -us𝐵 ) } )
38 negsfn -us Fn No
39 leftssno ( L ‘ 𝐵 ) ⊆ No
40 bdayelon ( bday 𝐴 ) ∈ On
41 oldbday ( ( ( bday 𝐴 ) ∈ On ∧ 𝑑 No ) → ( 𝑑 ∈ ( O ‘ ( bday 𝐴 ) ) ↔ ( bday 𝑑 ) ∈ ( bday 𝐴 ) ) )
42 40 17 41 sylancr ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → ( 𝑑 ∈ ( O ‘ ( bday 𝐴 ) ) ↔ ( bday 𝑑 ) ∈ ( bday 𝐴 ) ) )
43 24 42 mpbird ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → 𝑑 ∈ ( O ‘ ( bday 𝐴 ) ) )
44 5 fveq2d ( 𝜑 → ( O ‘ ( bday 𝐴 ) ) = ( O ‘ ( bday 𝐵 ) ) )
45 44 adantr ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → ( O ‘ ( bday 𝐴 ) ) = ( O ‘ ( bday 𝐵 ) ) )
46 43 45 eleqtrd ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → 𝑑 ∈ ( O ‘ ( bday 𝐵 ) ) )
47 simprr3 ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → 𝑑 <s 𝐵 )
48 leftval ( L ‘ 𝐵 ) = { 𝑑 ∈ ( O ‘ ( bday 𝐵 ) ) ∣ 𝑑 <s 𝐵 }
49 48 reqabi ( 𝑑 ∈ ( L ‘ 𝐵 ) ↔ ( 𝑑 ∈ ( O ‘ ( bday 𝐵 ) ) ∧ 𝑑 <s 𝐵 ) )
50 46 47 49 sylanbrc ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → 𝑑 ∈ ( L ‘ 𝐵 ) )
51 fnfvima ( ( -us Fn No ∧ ( L ‘ 𝐵 ) ⊆ No 𝑑 ∈ ( L ‘ 𝐵 ) ) → ( -us𝑑 ) ∈ ( -us “ ( L ‘ 𝐵 ) ) )
52 38 39 50 51 mp3an12i ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → ( -us𝑑 ) ∈ ( -us “ ( L ‘ 𝐵 ) ) )
53 34 37 52 ssltsepcd ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → ( -us𝐵 ) <s ( -us𝑑 ) )
54 30 simp2d ( 𝜑 → ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us𝐴 ) } )
55 54 adantr ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us𝐴 ) } )
56 rightssno ( R ‘ 𝐴 ) ⊆ No
57 simprr2 ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → 𝐴 <s 𝑑 )
58 rightval ( R ‘ 𝐴 ) = { 𝑑 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝐴 <s 𝑑 }
59 58 reqabi ( 𝑑 ∈ ( R ‘ 𝐴 ) ↔ ( 𝑑 ∈ ( O ‘ ( bday 𝐴 ) ) ∧ 𝐴 <s 𝑑 ) )
60 43 57 59 sylanbrc ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → 𝑑 ∈ ( R ‘ 𝐴 ) )
61 fnfvima ( ( -us Fn No ∧ ( R ‘ 𝐴 ) ⊆ No 𝑑 ∈ ( R ‘ 𝐴 ) ) → ( -us𝑑 ) ∈ ( -us “ ( R ‘ 𝐴 ) ) )
62 38 56 60 61 mp3an12i ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → ( -us𝑑 ) ∈ ( -us “ ( R ‘ 𝐴 ) ) )
63 fvex ( -us𝐴 ) ∈ V
64 63 snid ( -us𝐴 ) ∈ { ( -us𝐴 ) }
65 64 a1i ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → ( -us𝐴 ) ∈ { ( -us𝐴 ) } )
66 55 62 65 ssltsepcd ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → ( -us𝑑 ) <s ( -us𝐴 ) )
67 15 29 32 53 66 slttrd ( ( 𝜑 ∧ ( 𝑑 No ∧ ( ( bday 𝑑 ) ∈ ( bday 𝐴 ) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵 ) ) ) → ( -us𝐵 ) <s ( -us𝐴 ) )
68 7 67 rexlimddv ( 𝜑 → ( -us𝐵 ) <s ( -us𝐴 ) )