| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
| 2 |
|
negsproplem4.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 3 |
|
negsproplem4.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 4 |
|
negsproplem4.3 |
⊢ ( 𝜑 → 𝐴 <s 𝐵 ) |
| 5 |
|
negsproplem6.4 |
⊢ ( 𝜑 → ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) |
| 6 |
|
nodense |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ∃ 𝑑 ∈ No ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) |
| 7 |
2 3 5 4 6
|
syl22anc |
⊢ ( 𝜑 → ∃ 𝑑 ∈ No ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) |
| 8 |
|
uncom |
⊢ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) = ( ( bday ‘ 𝐵 ) ∪ ( bday ‘ 𝐴 ) ) |
| 9 |
8
|
eleq2i |
⊢ ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ↔ ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐵 ) ∪ ( bday ‘ 𝐴 ) ) ) |
| 10 |
9
|
imbi1i |
⊢ ( ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ↔ ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐵 ) ∪ ( bday ‘ 𝐴 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
| 11 |
10
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ↔ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐵 ) ∪ ( bday ‘ 𝐴 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
| 12 |
1 11
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐵 ) ∪ ( bday ‘ 𝐴 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
| 13 |
12 3
|
negsproplem3 |
⊢ ( 𝜑 → ( ( -us ‘ 𝐵 ) ∈ No ∧ ( -us “ ( R ‘ 𝐵 ) ) <<s { ( -us ‘ 𝐵 ) } ∧ { ( -us ‘ 𝐵 ) } <<s ( -us “ ( L ‘ 𝐵 ) ) ) ) |
| 14 |
13
|
simp1d |
⊢ ( 𝜑 → ( -us ‘ 𝐵 ) ∈ No ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → ( -us ‘ 𝐵 ) ∈ No ) |
| 16 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
| 17 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → 𝑑 ∈ No ) |
| 18 |
|
0sno |
⊢ 0s ∈ No |
| 19 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → 0s ∈ No ) |
| 20 |
|
bday0s |
⊢ ( bday ‘ 0s ) = ∅ |
| 21 |
20
|
uneq2i |
⊢ ( ( bday ‘ 𝑑 ) ∪ ( bday ‘ 0s ) ) = ( ( bday ‘ 𝑑 ) ∪ ∅ ) |
| 22 |
|
un0 |
⊢ ( ( bday ‘ 𝑑 ) ∪ ∅ ) = ( bday ‘ 𝑑 ) |
| 23 |
21 22
|
eqtri |
⊢ ( ( bday ‘ 𝑑 ) ∪ ( bday ‘ 0s ) ) = ( bday ‘ 𝑑 ) |
| 24 |
|
simprr1 |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ) |
| 25 |
|
elun1 |
⊢ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) → ( bday ‘ 𝑑 ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ) |
| 26 |
24 25
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → ( bday ‘ 𝑑 ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ) |
| 27 |
23 26
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → ( ( bday ‘ 𝑑 ) ∪ ( bday ‘ 0s ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ) |
| 28 |
16 17 19 27
|
negsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → ( ( -us ‘ 𝑑 ) ∈ No ∧ ( 𝑑 <s 0s → ( -us ‘ 0s ) <s ( -us ‘ 𝑑 ) ) ) ) |
| 29 |
28
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → ( -us ‘ 𝑑 ) ∈ No ) |
| 30 |
1 2
|
negsproplem3 |
⊢ ( 𝜑 → ( ( -us ‘ 𝐴 ) ∈ No ∧ ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us ‘ 𝐴 ) } ∧ { ( -us ‘ 𝐴 ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ) ) |
| 31 |
30
|
simp1d |
⊢ ( 𝜑 → ( -us ‘ 𝐴 ) ∈ No ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → ( -us ‘ 𝐴 ) ∈ No ) |
| 33 |
13
|
simp3d |
⊢ ( 𝜑 → { ( -us ‘ 𝐵 ) } <<s ( -us “ ( L ‘ 𝐵 ) ) ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → { ( -us ‘ 𝐵 ) } <<s ( -us “ ( L ‘ 𝐵 ) ) ) |
| 35 |
|
fvex |
⊢ ( -us ‘ 𝐵 ) ∈ V |
| 36 |
35
|
snid |
⊢ ( -us ‘ 𝐵 ) ∈ { ( -us ‘ 𝐵 ) } |
| 37 |
36
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → ( -us ‘ 𝐵 ) ∈ { ( -us ‘ 𝐵 ) } ) |
| 38 |
|
negsfn |
⊢ -us Fn No |
| 39 |
|
leftssno |
⊢ ( L ‘ 𝐵 ) ⊆ No |
| 40 |
|
bdayelon |
⊢ ( bday ‘ 𝐴 ) ∈ On |
| 41 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ 𝑑 ∈ No ) → ( 𝑑 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ↔ ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ) ) |
| 42 |
40 17 41
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → ( 𝑑 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ↔ ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ) ) |
| 43 |
24 42
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → 𝑑 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
| 44 |
5
|
fveq2d |
⊢ ( 𝜑 → ( O ‘ ( bday ‘ 𝐴 ) ) = ( O ‘ ( bday ‘ 𝐵 ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → ( O ‘ ( bday ‘ 𝐴 ) ) = ( O ‘ ( bday ‘ 𝐵 ) ) ) |
| 46 |
43 45
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → 𝑑 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ) |
| 47 |
|
simprr3 |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → 𝑑 <s 𝐵 ) |
| 48 |
|
leftval |
⊢ ( L ‘ 𝐵 ) = { 𝑑 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ∣ 𝑑 <s 𝐵 } |
| 49 |
48
|
reqabi |
⊢ ( 𝑑 ∈ ( L ‘ 𝐵 ) ↔ ( 𝑑 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ∧ 𝑑 <s 𝐵 ) ) |
| 50 |
46 47 49
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → 𝑑 ∈ ( L ‘ 𝐵 ) ) |
| 51 |
|
fnfvima |
⊢ ( ( -us Fn No ∧ ( L ‘ 𝐵 ) ⊆ No ∧ 𝑑 ∈ ( L ‘ 𝐵 ) ) → ( -us ‘ 𝑑 ) ∈ ( -us “ ( L ‘ 𝐵 ) ) ) |
| 52 |
38 39 50 51
|
mp3an12i |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → ( -us ‘ 𝑑 ) ∈ ( -us “ ( L ‘ 𝐵 ) ) ) |
| 53 |
34 37 52
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝑑 ) ) |
| 54 |
30
|
simp2d |
⊢ ( 𝜑 → ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us ‘ 𝐴 ) } ) |
| 55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us ‘ 𝐴 ) } ) |
| 56 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
| 57 |
|
simprr2 |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → 𝐴 <s 𝑑 ) |
| 58 |
|
rightval |
⊢ ( R ‘ 𝐴 ) = { 𝑑 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝐴 <s 𝑑 } |
| 59 |
58
|
reqabi |
⊢ ( 𝑑 ∈ ( R ‘ 𝐴 ) ↔ ( 𝑑 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∧ 𝐴 <s 𝑑 ) ) |
| 60 |
43 57 59
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → 𝑑 ∈ ( R ‘ 𝐴 ) ) |
| 61 |
|
fnfvima |
⊢ ( ( -us Fn No ∧ ( R ‘ 𝐴 ) ⊆ No ∧ 𝑑 ∈ ( R ‘ 𝐴 ) ) → ( -us ‘ 𝑑 ) ∈ ( -us “ ( R ‘ 𝐴 ) ) ) |
| 62 |
38 56 60 61
|
mp3an12i |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → ( -us ‘ 𝑑 ) ∈ ( -us “ ( R ‘ 𝐴 ) ) ) |
| 63 |
|
fvex |
⊢ ( -us ‘ 𝐴 ) ∈ V |
| 64 |
63
|
snid |
⊢ ( -us ‘ 𝐴 ) ∈ { ( -us ‘ 𝐴 ) } |
| 65 |
64
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → ( -us ‘ 𝐴 ) ∈ { ( -us ‘ 𝐴 ) } ) |
| 66 |
55 62 65
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → ( -us ‘ 𝑑 ) <s ( -us ‘ 𝐴 ) ) |
| 67 |
15 29 32 53 66
|
slttrd |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ No ∧ ( ( bday ‘ 𝑑 ) ∈ ( bday ‘ 𝐴 ) ∧ 𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵 ) ) ) → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) |
| 68 |
7 67
|
rexlimddv |
⊢ ( 𝜑 → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) |