| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
| 2 |
|
negsproplem4.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 3 |
|
negsproplem4.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 4 |
|
negsproplem4.3 |
⊢ ( 𝜑 → 𝐴 <s 𝐵 ) |
| 5 |
|
bdayelon |
⊢ ( bday ‘ 𝐴 ) ∈ On |
| 6 |
5
|
onordi |
⊢ Ord ( bday ‘ 𝐴 ) |
| 7 |
|
bdayelon |
⊢ ( bday ‘ 𝐵 ) ∈ On |
| 8 |
7
|
onordi |
⊢ Ord ( bday ‘ 𝐵 ) |
| 9 |
|
ordtri3or |
⊢ ( ( Ord ( bday ‘ 𝐴 ) ∧ Ord ( bday ‘ 𝐵 ) ) → ( ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ∨ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∨ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) ) |
| 10 |
6 8 9
|
mp2an |
⊢ ( ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ∨ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∨ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) |
| 11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
| 12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) → 𝐴 ∈ No ) |
| 13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) → 𝐵 ∈ No ) |
| 14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) → 𝐴 <s 𝐵 ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) |
| 16 |
11 12 13 14 15
|
negsproplem4 |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) |
| 17 |
16
|
ex |
⊢ ( 𝜑 → ( ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) |
| 18 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
| 19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → 𝐴 ∈ No ) |
| 20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → 𝐵 ∈ No ) |
| 21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → 𝐴 <s 𝐵 ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) |
| 23 |
18 19 20 21 22
|
negsproplem6 |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) |
| 24 |
23
|
ex |
⊢ ( 𝜑 → ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) |
| 25 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
| 26 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) → 𝐴 ∈ No ) |
| 27 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) → 𝐵 ∈ No ) |
| 28 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) → 𝐴 <s 𝐵 ) |
| 29 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) → ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) |
| 30 |
25 26 27 28 29
|
negsproplem5 |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) |
| 31 |
30
|
ex |
⊢ ( 𝜑 → ( ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) |
| 32 |
17 24 31
|
3jaod |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ∨ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∨ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) |
| 33 |
10 32
|
mpi |
⊢ ( 𝜑 → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) |