Step |
Hyp |
Ref |
Expression |
1 |
|
negsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
2 |
|
negsproplem4.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
3 |
|
negsproplem4.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
4 |
|
negsproplem4.3 |
⊢ ( 𝜑 → 𝐴 <s 𝐵 ) |
5 |
|
bdayelon |
⊢ ( bday ‘ 𝐴 ) ∈ On |
6 |
5
|
onordi |
⊢ Ord ( bday ‘ 𝐴 ) |
7 |
|
bdayelon |
⊢ ( bday ‘ 𝐵 ) ∈ On |
8 |
7
|
onordi |
⊢ Ord ( bday ‘ 𝐵 ) |
9 |
|
ordtri3or |
⊢ ( ( Ord ( bday ‘ 𝐴 ) ∧ Ord ( bday ‘ 𝐵 ) ) → ( ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ∨ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∨ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) ) |
10 |
6 8 9
|
mp2an |
⊢ ( ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ∨ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∨ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) |
11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) → 𝐴 ∈ No ) |
13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) → 𝐵 ∈ No ) |
14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) → 𝐴 <s 𝐵 ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) |
16 |
11 12 13 14 15
|
negsproplem4 |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) |
17 |
16
|
ex |
⊢ ( 𝜑 → ( ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) |
18 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → 𝐴 ∈ No ) |
20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → 𝐵 ∈ No ) |
21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → 𝐴 <s 𝐵 ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) |
23 |
18 19 20 21 22
|
negsproplem6 |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) |
24 |
23
|
ex |
⊢ ( 𝜑 → ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) |
25 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
26 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) → 𝐴 ∈ No ) |
27 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) → 𝐵 ∈ No ) |
28 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) → 𝐴 <s 𝐵 ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) → ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) |
30 |
25 26 27 28 29
|
negsproplem5 |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) |
31 |
30
|
ex |
⊢ ( 𝜑 → ( ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) |
32 |
17 24 31
|
3jaod |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ∨ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∨ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) |
33 |
10 32
|
mpi |
⊢ ( 𝜑 → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) |