| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-neg |
⊢ - 𝐵 = ( 0 − 𝐵 ) |
| 2 |
1
|
oveq2i |
⊢ ( 𝐴 + - 𝐵 ) = ( 𝐴 + ( 0 − 𝐵 ) ) |
| 3 |
2
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 + ( 0 − 𝐵 ) ) ) |
| 4 |
|
0cn |
⊢ 0 ∈ ℂ |
| 5 |
|
addsubass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 0 ) − 𝐵 ) = ( 𝐴 + ( 0 − 𝐵 ) ) ) |
| 6 |
4 5
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 0 ) − 𝐵 ) = ( 𝐴 + ( 0 − 𝐵 ) ) ) |
| 7 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 8 |
7
|
addridd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 0 ) = 𝐴 ) |
| 9 |
8
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 0 ) − 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 10 |
3 6 9
|
3eqtr2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |