Description: Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negsubdi2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negsubdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐴 − 𝐵 ) = ( - 𝐴 + 𝐵 ) ) | |
| 2 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 3 | addcom | ⊢ ( ( - 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 + 𝐵 ) = ( 𝐵 + - 𝐴 ) ) | |
| 4 | 2 3 | sylan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 + 𝐵 ) = ( 𝐵 + - 𝐴 ) ) |
| 5 | negsub | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 + - 𝐴 ) = ( 𝐵 − 𝐴 ) ) | |
| 6 | 5 | ancoms | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 + - 𝐴 ) = ( 𝐵 − 𝐴 ) ) |
| 7 | 1 4 6 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐴 ) ) |