Metamath Proof Explorer


Theorem negsubdi2i

Description: Distribution of negative over subtraction. (Contributed by NM, 1-Oct-1999)

Ref Expression
Hypotheses negidi.1 𝐴 ∈ ℂ
pncan3i.2 𝐵 ∈ ℂ
Assertion negsubdi2i - ( 𝐴𝐵 ) = ( 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 negidi.1 𝐴 ∈ ℂ
2 pncan3i.2 𝐵 ∈ ℂ
3 1 2 negsubdii - ( 𝐴𝐵 ) = ( - 𝐴 + 𝐵 )
4 1 negcli - 𝐴 ∈ ℂ
5 2 1 negsubi ( 𝐵 + - 𝐴 ) = ( 𝐵𝐴 )
6 2 4 5 addcomli ( - 𝐴 + 𝐵 ) = ( 𝐵𝐴 )
7 3 6 eqtri - ( 𝐴𝐵 ) = ( 𝐵𝐴 )