Metamath Proof Explorer


Theorem negsubsdi2d

Description: Distribution of negative over subtraction. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses negsubsdi2d.1 ( 𝜑𝐴 No )
negsubsdi2d.2 ( 𝜑𝐵 No )
Assertion negsubsdi2d ( 𝜑 → ( -us ‘ ( 𝐴 -s 𝐵 ) ) = ( 𝐵 -s 𝐴 ) )

Proof

Step Hyp Ref Expression
1 negsubsdi2d.1 ( 𝜑𝐴 No )
2 negsubsdi2d.2 ( 𝜑𝐵 No )
3 2 negscld ( 𝜑 → ( -us𝐵 ) ∈ No )
4 negsdi ( ( 𝐴 No ∧ ( -us𝐵 ) ∈ No ) → ( -us ‘ ( 𝐴 +s ( -us𝐵 ) ) ) = ( ( -us𝐴 ) +s ( -us ‘ ( -us𝐵 ) ) ) )
5 1 3 4 syl2anc ( 𝜑 → ( -us ‘ ( 𝐴 +s ( -us𝐵 ) ) ) = ( ( -us𝐴 ) +s ( -us ‘ ( -us𝐵 ) ) ) )
6 negnegs ( 𝐵 No → ( -us ‘ ( -us𝐵 ) ) = 𝐵 )
7 2 6 syl ( 𝜑 → ( -us ‘ ( -us𝐵 ) ) = 𝐵 )
8 7 oveq2d ( 𝜑 → ( ( -us𝐴 ) +s ( -us ‘ ( -us𝐵 ) ) ) = ( ( -us𝐴 ) +s 𝐵 ) )
9 1 negscld ( 𝜑 → ( -us𝐴 ) ∈ No )
10 9 2 addscomd ( 𝜑 → ( ( -us𝐴 ) +s 𝐵 ) = ( 𝐵 +s ( -us𝐴 ) ) )
11 5 8 10 3eqtrd ( 𝜑 → ( -us ‘ ( 𝐴 +s ( -us𝐵 ) ) ) = ( 𝐵 +s ( -us𝐴 ) ) )
12 1 2 subsvald ( 𝜑 → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us𝐵 ) ) )
13 12 fveq2d ( 𝜑 → ( -us ‘ ( 𝐴 -s 𝐵 ) ) = ( -us ‘ ( 𝐴 +s ( -us𝐵 ) ) ) )
14 2 1 subsvald ( 𝜑 → ( 𝐵 -s 𝐴 ) = ( 𝐵 +s ( -us𝐴 ) ) )
15 11 13 14 3eqtr4d ( 𝜑 → ( -us ‘ ( 𝐴 -s 𝐵 ) ) = ( 𝐵 -s 𝐴 ) )