Step |
Hyp |
Ref |
Expression |
1 |
|
negsubsdi2d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
negsubsdi2d.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
2
|
negscld |
⊢ ( 𝜑 → ( -us ‘ 𝐵 ) ∈ No ) |
4 |
|
negsdi |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐵 ) ∈ No ) → ( -us ‘ ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ ( -us ‘ 𝐵 ) ) ) ) |
5 |
1 3 4
|
syl2anc |
⊢ ( 𝜑 → ( -us ‘ ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ ( -us ‘ 𝐵 ) ) ) ) |
6 |
|
negnegs |
⊢ ( 𝐵 ∈ No → ( -us ‘ ( -us ‘ 𝐵 ) ) = 𝐵 ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → ( -us ‘ ( -us ‘ 𝐵 ) ) = 𝐵 ) |
8 |
7
|
oveq2d |
⊢ ( 𝜑 → ( ( -us ‘ 𝐴 ) +s ( -us ‘ ( -us ‘ 𝐵 ) ) ) = ( ( -us ‘ 𝐴 ) +s 𝐵 ) ) |
9 |
1
|
negscld |
⊢ ( 𝜑 → ( -us ‘ 𝐴 ) ∈ No ) |
10 |
9 2
|
addscomd |
⊢ ( 𝜑 → ( ( -us ‘ 𝐴 ) +s 𝐵 ) = ( 𝐵 +s ( -us ‘ 𝐴 ) ) ) |
11 |
5 8 10
|
3eqtrd |
⊢ ( 𝜑 → ( -us ‘ ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) = ( 𝐵 +s ( -us ‘ 𝐴 ) ) ) |
12 |
1 2
|
subsvald |
⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝜑 → ( -us ‘ ( 𝐴 -s 𝐵 ) ) = ( -us ‘ ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) ) |
14 |
2 1
|
subsvald |
⊢ ( 𝜑 → ( 𝐵 -s 𝐴 ) = ( 𝐵 +s ( -us ‘ 𝐴 ) ) ) |
15 |
11 13 14
|
3eqtr4d |
⊢ ( 𝜑 → ( -us ‘ ( 𝐴 -s 𝐵 ) ) = ( 𝐵 -s 𝐴 ) ) |