Step |
Hyp |
Ref |
Expression |
1 |
|
negsunif.1 |
⊢ ( 𝜑 → 𝐿 <<s 𝑅 ) |
2 |
|
negsunif.2 |
⊢ ( 𝜑 → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
3 |
1
|
scutcld |
⊢ ( 𝜑 → ( 𝐿 |s 𝑅 ) ∈ No ) |
4 |
2 3
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
5 |
|
negsval |
⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) = ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → ( -us ‘ 𝐴 ) = ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) ) |
7 |
|
negscut2 |
⊢ ( 𝐴 ∈ No → ( -us “ ( R ‘ 𝐴 ) ) <<s ( -us “ ( L ‘ 𝐴 ) ) ) |
8 |
4 7
|
syl |
⊢ ( 𝜑 → ( -us “ ( R ‘ 𝐴 ) ) <<s ( -us “ ( L ‘ 𝐴 ) ) ) |
9 |
1 2
|
cofcutr2d |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ 𝑅 𝑑 ≤s 𝑐 ) |
10 |
|
negsfn |
⊢ -us Fn No |
11 |
|
ssltss2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ⊆ No ) |
12 |
1 11
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ No ) |
13 |
|
breq2 |
⊢ ( 𝑏 = ( -us ‘ 𝑑 ) → ( ( -us ‘ 𝑐 ) ≤s 𝑏 ↔ ( -us ‘ 𝑐 ) ≤s ( -us ‘ 𝑑 ) ) ) |
14 |
13
|
imaeqsexv |
⊢ ( ( -us Fn No ∧ 𝑅 ⊆ No ) → ( ∃ 𝑏 ∈ ( -us “ 𝑅 ) ( -us ‘ 𝑐 ) ≤s 𝑏 ↔ ∃ 𝑑 ∈ 𝑅 ( -us ‘ 𝑐 ) ≤s ( -us ‘ 𝑑 ) ) ) |
15 |
10 12 14
|
sylancr |
⊢ ( 𝜑 → ( ∃ 𝑏 ∈ ( -us “ 𝑅 ) ( -us ‘ 𝑐 ) ≤s 𝑏 ↔ ∃ 𝑑 ∈ 𝑅 ( -us ‘ 𝑐 ) ≤s ( -us ‘ 𝑑 ) ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( -us “ 𝑅 ) ( -us ‘ 𝑐 ) ≤s 𝑏 ↔ ∀ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ 𝑅 ( -us ‘ 𝑐 ) ≤s ( -us ‘ 𝑑 ) ) ) |
17 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → 𝑅 ⊆ No ) |
18 |
17
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ 𝑑 ∈ 𝑅 ) → 𝑑 ∈ No ) |
19 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
20 |
19
|
sseli |
⊢ ( 𝑐 ∈ ( R ‘ 𝐴 ) → 𝑐 ∈ No ) |
21 |
20
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ 𝑑 ∈ 𝑅 ) → 𝑐 ∈ No ) |
22 |
18 21
|
slenegd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ 𝑑 ∈ 𝑅 ) → ( 𝑑 ≤s 𝑐 ↔ ( -us ‘ 𝑐 ) ≤s ( -us ‘ 𝑑 ) ) ) |
23 |
22
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → ( ∃ 𝑑 ∈ 𝑅 𝑑 ≤s 𝑐 ↔ ∃ 𝑑 ∈ 𝑅 ( -us ‘ 𝑐 ) ≤s ( -us ‘ 𝑑 ) ) ) |
24 |
23
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ 𝑅 𝑑 ≤s 𝑐 ↔ ∀ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ 𝑅 ( -us ‘ 𝑐 ) ≤s ( -us ‘ 𝑑 ) ) ) |
25 |
16 24
|
bitr4d |
⊢ ( 𝜑 → ( ∀ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( -us “ 𝑅 ) ( -us ‘ 𝑐 ) ≤s 𝑏 ↔ ∀ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ 𝑅 𝑑 ≤s 𝑐 ) ) |
26 |
9 25
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( -us “ 𝑅 ) ( -us ‘ 𝑐 ) ≤s 𝑏 ) |
27 |
|
breq1 |
⊢ ( 𝑎 = ( -us ‘ 𝑐 ) → ( 𝑎 ≤s 𝑏 ↔ ( -us ‘ 𝑐 ) ≤s 𝑏 ) ) |
28 |
27
|
rexbidv |
⊢ ( 𝑎 = ( -us ‘ 𝑐 ) → ( ∃ 𝑏 ∈ ( -us “ 𝑅 ) 𝑎 ≤s 𝑏 ↔ ∃ 𝑏 ∈ ( -us “ 𝑅 ) ( -us ‘ 𝑐 ) ≤s 𝑏 ) ) |
29 |
28
|
imaeqsalv |
⊢ ( ( -us Fn No ∧ ( R ‘ 𝐴 ) ⊆ No ) → ( ∀ 𝑎 ∈ ( -us “ ( R ‘ 𝐴 ) ) ∃ 𝑏 ∈ ( -us “ 𝑅 ) 𝑎 ≤s 𝑏 ↔ ∀ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( -us “ 𝑅 ) ( -us ‘ 𝑐 ) ≤s 𝑏 ) ) |
30 |
10 19 29
|
mp2an |
⊢ ( ∀ 𝑎 ∈ ( -us “ ( R ‘ 𝐴 ) ) ∃ 𝑏 ∈ ( -us “ 𝑅 ) 𝑎 ≤s 𝑏 ↔ ∀ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( -us “ 𝑅 ) ( -us ‘ 𝑐 ) ≤s 𝑏 ) |
31 |
26 30
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( -us “ ( R ‘ 𝐴 ) ) ∃ 𝑏 ∈ ( -us “ 𝑅 ) 𝑎 ≤s 𝑏 ) |
32 |
1 2
|
cofcutr1d |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ( L ‘ 𝐴 ) ∃ 𝑑 ∈ 𝐿 𝑐 ≤s 𝑑 ) |
33 |
|
ssltss1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ⊆ No ) |
34 |
1 33
|
syl |
⊢ ( 𝜑 → 𝐿 ⊆ No ) |
35 |
|
breq1 |
⊢ ( 𝑏 = ( -us ‘ 𝑑 ) → ( 𝑏 ≤s ( -us ‘ 𝑐 ) ↔ ( -us ‘ 𝑑 ) ≤s ( -us ‘ 𝑐 ) ) ) |
36 |
35
|
imaeqsexv |
⊢ ( ( -us Fn No ∧ 𝐿 ⊆ No ) → ( ∃ 𝑏 ∈ ( -us “ 𝐿 ) 𝑏 ≤s ( -us ‘ 𝑐 ) ↔ ∃ 𝑑 ∈ 𝐿 ( -us ‘ 𝑑 ) ≤s ( -us ‘ 𝑐 ) ) ) |
37 |
10 34 36
|
sylancr |
⊢ ( 𝜑 → ( ∃ 𝑏 ∈ ( -us “ 𝐿 ) 𝑏 ≤s ( -us ‘ 𝑐 ) ↔ ∃ 𝑑 ∈ 𝐿 ( -us ‘ 𝑑 ) ≤s ( -us ‘ 𝑐 ) ) ) |
38 |
37
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑐 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( -us “ 𝐿 ) 𝑏 ≤s ( -us ‘ 𝑐 ) ↔ ∀ 𝑐 ∈ ( L ‘ 𝐴 ) ∃ 𝑑 ∈ 𝐿 ( -us ‘ 𝑑 ) ≤s ( -us ‘ 𝑐 ) ) ) |
39 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
40 |
39
|
sseli |
⊢ ( 𝑐 ∈ ( L ‘ 𝐴 ) → 𝑐 ∈ No ) |
41 |
40
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( L ‘ 𝐴 ) ) ∧ 𝑑 ∈ 𝐿 ) → 𝑐 ∈ No ) |
42 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( L ‘ 𝐴 ) ) → 𝐿 ⊆ No ) |
43 |
42
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( L ‘ 𝐴 ) ) ∧ 𝑑 ∈ 𝐿 ) → 𝑑 ∈ No ) |
44 |
41 43
|
slenegd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( L ‘ 𝐴 ) ) ∧ 𝑑 ∈ 𝐿 ) → ( 𝑐 ≤s 𝑑 ↔ ( -us ‘ 𝑑 ) ≤s ( -us ‘ 𝑐 ) ) ) |
45 |
44
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( L ‘ 𝐴 ) ) → ( ∃ 𝑑 ∈ 𝐿 𝑐 ≤s 𝑑 ↔ ∃ 𝑑 ∈ 𝐿 ( -us ‘ 𝑑 ) ≤s ( -us ‘ 𝑐 ) ) ) |
46 |
45
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑐 ∈ ( L ‘ 𝐴 ) ∃ 𝑑 ∈ 𝐿 𝑐 ≤s 𝑑 ↔ ∀ 𝑐 ∈ ( L ‘ 𝐴 ) ∃ 𝑑 ∈ 𝐿 ( -us ‘ 𝑑 ) ≤s ( -us ‘ 𝑐 ) ) ) |
47 |
38 46
|
bitr4d |
⊢ ( 𝜑 → ( ∀ 𝑐 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( -us “ 𝐿 ) 𝑏 ≤s ( -us ‘ 𝑐 ) ↔ ∀ 𝑐 ∈ ( L ‘ 𝐴 ) ∃ 𝑑 ∈ 𝐿 𝑐 ≤s 𝑑 ) ) |
48 |
32 47
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( -us “ 𝐿 ) 𝑏 ≤s ( -us ‘ 𝑐 ) ) |
49 |
|
breq2 |
⊢ ( 𝑎 = ( -us ‘ 𝑐 ) → ( 𝑏 ≤s 𝑎 ↔ 𝑏 ≤s ( -us ‘ 𝑐 ) ) ) |
50 |
49
|
rexbidv |
⊢ ( 𝑎 = ( -us ‘ 𝑐 ) → ( ∃ 𝑏 ∈ ( -us “ 𝐿 ) 𝑏 ≤s 𝑎 ↔ ∃ 𝑏 ∈ ( -us “ 𝐿 ) 𝑏 ≤s ( -us ‘ 𝑐 ) ) ) |
51 |
50
|
imaeqsalv |
⊢ ( ( -us Fn No ∧ ( L ‘ 𝐴 ) ⊆ No ) → ( ∀ 𝑎 ∈ ( -us “ ( L ‘ 𝐴 ) ) ∃ 𝑏 ∈ ( -us “ 𝐿 ) 𝑏 ≤s 𝑎 ↔ ∀ 𝑐 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( -us “ 𝐿 ) 𝑏 ≤s ( -us ‘ 𝑐 ) ) ) |
52 |
10 39 51
|
mp2an |
⊢ ( ∀ 𝑎 ∈ ( -us “ ( L ‘ 𝐴 ) ) ∃ 𝑏 ∈ ( -us “ 𝐿 ) 𝑏 ≤s 𝑎 ↔ ∀ 𝑐 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( -us “ 𝐿 ) 𝑏 ≤s ( -us ‘ 𝑐 ) ) |
53 |
48 52
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( -us “ ( L ‘ 𝐴 ) ) ∃ 𝑏 ∈ ( -us “ 𝐿 ) 𝑏 ≤s 𝑎 ) |
54 |
|
fnfun |
⊢ ( -us Fn No → Fun -us ) |
55 |
10 54
|
ax-mp |
⊢ Fun -us |
56 |
|
ssltex2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ∈ V ) |
57 |
1 56
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
58 |
|
funimaexg |
⊢ ( ( Fun -us ∧ 𝑅 ∈ V ) → ( -us “ 𝑅 ) ∈ V ) |
59 |
55 57 58
|
sylancr |
⊢ ( 𝜑 → ( -us “ 𝑅 ) ∈ V ) |
60 |
|
snex |
⊢ { ( -us ‘ 𝐴 ) } ∈ V |
61 |
60
|
a1i |
⊢ ( 𝜑 → { ( -us ‘ 𝐴 ) } ∈ V ) |
62 |
|
imassrn |
⊢ ( -us “ 𝑅 ) ⊆ ran -us |
63 |
|
negsfo |
⊢ -us : No –onto→ No |
64 |
|
forn |
⊢ ( -us : No –onto→ No → ran -us = No ) |
65 |
63 64
|
ax-mp |
⊢ ran -us = No |
66 |
62 65
|
sseqtri |
⊢ ( -us “ 𝑅 ) ⊆ No |
67 |
66
|
a1i |
⊢ ( 𝜑 → ( -us “ 𝑅 ) ⊆ No ) |
68 |
4
|
negscld |
⊢ ( 𝜑 → ( -us ‘ 𝐴 ) ∈ No ) |
69 |
68
|
snssd |
⊢ ( 𝜑 → { ( -us ‘ 𝐴 ) } ⊆ No ) |
70 |
|
velsn |
⊢ ( 𝑎 ∈ { ( -us ‘ 𝐴 ) } ↔ 𝑎 = ( -us ‘ 𝐴 ) ) |
71 |
|
fvelimab |
⊢ ( ( -us Fn No ∧ 𝑅 ⊆ No ) → ( 𝑏 ∈ ( -us “ 𝑅 ) ↔ ∃ 𝑑 ∈ 𝑅 ( -us ‘ 𝑑 ) = 𝑏 ) ) |
72 |
10 12 71
|
sylancr |
⊢ ( 𝜑 → ( 𝑏 ∈ ( -us “ 𝑅 ) ↔ ∃ 𝑑 ∈ 𝑅 ( -us ‘ 𝑑 ) = 𝑏 ) ) |
73 |
2
|
sneqd |
⊢ ( 𝜑 → { 𝐴 } = { ( 𝐿 |s 𝑅 ) } ) |
74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑅 ) → { 𝐴 } = { ( 𝐿 |s 𝑅 ) } ) |
75 |
|
scutcut |
⊢ ( 𝐿 <<s 𝑅 → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
76 |
1 75
|
syl |
⊢ ( 𝜑 → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
77 |
76
|
simp3d |
⊢ ( 𝜑 → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) |
78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑅 ) → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) |
79 |
74 78
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑅 ) → { 𝐴 } <<s 𝑅 ) |
80 |
|
snidg |
⊢ ( 𝐴 ∈ No → 𝐴 ∈ { 𝐴 } ) |
81 |
4 80
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 } ) |
82 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑅 ) → 𝐴 ∈ { 𝐴 } ) |
83 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑅 ) → 𝑑 ∈ 𝑅 ) |
84 |
79 82 83
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑅 ) → 𝐴 <s 𝑑 ) |
85 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑅 ) → 𝐴 ∈ No ) |
86 |
12
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑅 ) → 𝑑 ∈ No ) |
87 |
85 86
|
sltnegd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑅 ) → ( 𝐴 <s 𝑑 ↔ ( -us ‘ 𝑑 ) <s ( -us ‘ 𝐴 ) ) ) |
88 |
84 87
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑅 ) → ( -us ‘ 𝑑 ) <s ( -us ‘ 𝐴 ) ) |
89 |
|
breq1 |
⊢ ( ( -us ‘ 𝑑 ) = 𝑏 → ( ( -us ‘ 𝑑 ) <s ( -us ‘ 𝐴 ) ↔ 𝑏 <s ( -us ‘ 𝐴 ) ) ) |
90 |
88 89
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑅 ) → ( ( -us ‘ 𝑑 ) = 𝑏 → 𝑏 <s ( -us ‘ 𝐴 ) ) ) |
91 |
90
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ 𝑅 ( -us ‘ 𝑑 ) = 𝑏 → 𝑏 <s ( -us ‘ 𝐴 ) ) ) |
92 |
72 91
|
sylbid |
⊢ ( 𝜑 → ( 𝑏 ∈ ( -us “ 𝑅 ) → 𝑏 <s ( -us ‘ 𝐴 ) ) ) |
93 |
|
breq2 |
⊢ ( 𝑎 = ( -us ‘ 𝐴 ) → ( 𝑏 <s 𝑎 ↔ 𝑏 <s ( -us ‘ 𝐴 ) ) ) |
94 |
93
|
imbi2d |
⊢ ( 𝑎 = ( -us ‘ 𝐴 ) → ( ( 𝑏 ∈ ( -us “ 𝑅 ) → 𝑏 <s 𝑎 ) ↔ ( 𝑏 ∈ ( -us “ 𝑅 ) → 𝑏 <s ( -us ‘ 𝐴 ) ) ) ) |
95 |
92 94
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑎 = ( -us ‘ 𝐴 ) → ( 𝑏 ∈ ( -us “ 𝑅 ) → 𝑏 <s 𝑎 ) ) ) |
96 |
70 95
|
biimtrid |
⊢ ( 𝜑 → ( 𝑎 ∈ { ( -us ‘ 𝐴 ) } → ( 𝑏 ∈ ( -us “ 𝑅 ) → 𝑏 <s 𝑎 ) ) ) |
97 |
96
|
3imp |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { ( -us ‘ 𝐴 ) } ∧ 𝑏 ∈ ( -us “ 𝑅 ) ) → 𝑏 <s 𝑎 ) |
98 |
97
|
3com23 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( -us “ 𝑅 ) ∧ 𝑎 ∈ { ( -us ‘ 𝐴 ) } ) → 𝑏 <s 𝑎 ) |
99 |
59 61 67 69 98
|
ssltd |
⊢ ( 𝜑 → ( -us “ 𝑅 ) <<s { ( -us ‘ 𝐴 ) } ) |
100 |
6
|
sneqd |
⊢ ( 𝜑 → { ( -us ‘ 𝐴 ) } = { ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) } ) |
101 |
99 100
|
breqtrd |
⊢ ( 𝜑 → ( -us “ 𝑅 ) <<s { ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) } ) |
102 |
|
ssltex1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ∈ V ) |
103 |
1 102
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ V ) |
104 |
|
funimaexg |
⊢ ( ( Fun -us ∧ 𝐿 ∈ V ) → ( -us “ 𝐿 ) ∈ V ) |
105 |
55 103 104
|
sylancr |
⊢ ( 𝜑 → ( -us “ 𝐿 ) ∈ V ) |
106 |
|
imassrn |
⊢ ( -us “ 𝐿 ) ⊆ ran -us |
107 |
106 65
|
sseqtri |
⊢ ( -us “ 𝐿 ) ⊆ No |
108 |
107
|
a1i |
⊢ ( 𝜑 → ( -us “ 𝐿 ) ⊆ No ) |
109 |
|
fvelimab |
⊢ ( ( -us Fn No ∧ 𝐿 ⊆ No ) → ( 𝑏 ∈ ( -us “ 𝐿 ) ↔ ∃ 𝑐 ∈ 𝐿 ( -us ‘ 𝑐 ) = 𝑏 ) ) |
110 |
10 34 109
|
sylancr |
⊢ ( 𝜑 → ( 𝑏 ∈ ( -us “ 𝐿 ) ↔ ∃ 𝑐 ∈ 𝐿 ( -us ‘ 𝑐 ) = 𝑏 ) ) |
111 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐿 ) → 𝐿 <<s 𝑅 ) |
112 |
111 75
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐿 ) → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
113 |
112
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐿 ) → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
114 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐿 ) → { 𝐴 } = { ( 𝐿 |s 𝑅 ) } ) |
115 |
113 114
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐿 ) → 𝐿 <<s { 𝐴 } ) |
116 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐿 ) → 𝑐 ∈ 𝐿 ) |
117 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐿 ) → 𝐴 ∈ { 𝐴 } ) |
118 |
115 116 117
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐿 ) → 𝑐 <s 𝐴 ) |
119 |
34
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐿 ) → 𝑐 ∈ No ) |
120 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐿 ) → 𝐴 ∈ No ) |
121 |
119 120
|
sltnegd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐿 ) → ( 𝑐 <s 𝐴 ↔ ( -us ‘ 𝐴 ) <s ( -us ‘ 𝑐 ) ) ) |
122 |
118 121
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐿 ) → ( -us ‘ 𝐴 ) <s ( -us ‘ 𝑐 ) ) |
123 |
|
breq2 |
⊢ ( ( -us ‘ 𝑐 ) = 𝑏 → ( ( -us ‘ 𝐴 ) <s ( -us ‘ 𝑐 ) ↔ ( -us ‘ 𝐴 ) <s 𝑏 ) ) |
124 |
122 123
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐿 ) → ( ( -us ‘ 𝑐 ) = 𝑏 → ( -us ‘ 𝐴 ) <s 𝑏 ) ) |
125 |
124
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ 𝐿 ( -us ‘ 𝑐 ) = 𝑏 → ( -us ‘ 𝐴 ) <s 𝑏 ) ) |
126 |
110 125
|
sylbid |
⊢ ( 𝜑 → ( 𝑏 ∈ ( -us “ 𝐿 ) → ( -us ‘ 𝐴 ) <s 𝑏 ) ) |
127 |
|
breq1 |
⊢ ( 𝑎 = ( -us ‘ 𝐴 ) → ( 𝑎 <s 𝑏 ↔ ( -us ‘ 𝐴 ) <s 𝑏 ) ) |
128 |
127
|
imbi2d |
⊢ ( 𝑎 = ( -us ‘ 𝐴 ) → ( ( 𝑏 ∈ ( -us “ 𝐿 ) → 𝑎 <s 𝑏 ) ↔ ( 𝑏 ∈ ( -us “ 𝐿 ) → ( -us ‘ 𝐴 ) <s 𝑏 ) ) ) |
129 |
126 128
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑎 = ( -us ‘ 𝐴 ) → ( 𝑏 ∈ ( -us “ 𝐿 ) → 𝑎 <s 𝑏 ) ) ) |
130 |
70 129
|
biimtrid |
⊢ ( 𝜑 → ( 𝑎 ∈ { ( -us ‘ 𝐴 ) } → ( 𝑏 ∈ ( -us “ 𝐿 ) → 𝑎 <s 𝑏 ) ) ) |
131 |
130
|
3imp |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { ( -us ‘ 𝐴 ) } ∧ 𝑏 ∈ ( -us “ 𝐿 ) ) → 𝑎 <s 𝑏 ) |
132 |
61 105 69 108 131
|
ssltd |
⊢ ( 𝜑 → { ( -us ‘ 𝐴 ) } <<s ( -us “ 𝐿 ) ) |
133 |
100 132
|
eqbrtrrd |
⊢ ( 𝜑 → { ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) } <<s ( -us “ 𝐿 ) ) |
134 |
8 31 53 101 133
|
cofcut1d |
⊢ ( 𝜑 → ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) = ( ( -us “ 𝑅 ) |s ( -us “ 𝐿 ) ) ) |
135 |
6 134
|
eqtrd |
⊢ ( 𝜑 → ( -us ‘ 𝐴 ) = ( ( -us “ 𝑅 ) |s ( -us “ 𝐿 ) ) ) |