| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-negs |
⊢ -us = norec ( ( 𝑥 ∈ V , 𝑛 ∈ V ↦ ( ( 𝑛 “ ( R ‘ 𝑥 ) ) |s ( 𝑛 “ ( L ‘ 𝑥 ) ) ) ) ) |
| 2 |
1
|
norecov |
⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) = ( 𝐴 ( 𝑥 ∈ V , 𝑛 ∈ V ↦ ( ( 𝑛 “ ( R ‘ 𝑥 ) ) |s ( 𝑛 “ ( L ‘ 𝑥 ) ) ) ) ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) ) ) |
| 3 |
|
elex |
⊢ ( 𝐴 ∈ No → 𝐴 ∈ V ) |
| 4 |
|
negsfn |
⊢ -us Fn No |
| 5 |
|
fnfun |
⊢ ( -us Fn No → Fun -us ) |
| 6 |
4 5
|
ax-mp |
⊢ Fun -us |
| 7 |
|
fvex |
⊢ ( L ‘ 𝐴 ) ∈ V |
| 8 |
|
fvex |
⊢ ( R ‘ 𝐴 ) ∈ V |
| 9 |
7 8
|
unex |
⊢ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∈ V |
| 10 |
|
resfunexg |
⊢ ( ( Fun -us ∧ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∈ V ) → ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) ∈ V ) |
| 11 |
6 9 10
|
mp2an |
⊢ ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) ∈ V |
| 12 |
11
|
a1i |
⊢ ( 𝐴 ∈ No → ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) ∈ V ) |
| 13 |
|
ovexd |
⊢ ( 𝐴 ∈ No → ( ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( R ‘ 𝐴 ) ) |s ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( L ‘ 𝐴 ) ) ) ∈ V ) |
| 14 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( R ‘ 𝑥 ) = ( R ‘ 𝐴 ) ) |
| 15 |
14
|
imaeq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝑛 “ ( R ‘ 𝑥 ) ) = ( 𝑛 “ ( R ‘ 𝐴 ) ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( L ‘ 𝑥 ) = ( L ‘ 𝐴 ) ) |
| 17 |
16
|
imaeq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝑛 “ ( L ‘ 𝑥 ) ) = ( 𝑛 “ ( L ‘ 𝐴 ) ) ) |
| 18 |
15 17
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑛 “ ( R ‘ 𝑥 ) ) |s ( 𝑛 “ ( L ‘ 𝑥 ) ) ) = ( ( 𝑛 “ ( R ‘ 𝐴 ) ) |s ( 𝑛 “ ( L ‘ 𝐴 ) ) ) ) |
| 19 |
|
imaeq1 |
⊢ ( 𝑛 = ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) → ( 𝑛 “ ( R ‘ 𝐴 ) ) = ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( R ‘ 𝐴 ) ) ) |
| 20 |
|
imaeq1 |
⊢ ( 𝑛 = ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) → ( 𝑛 “ ( L ‘ 𝐴 ) ) = ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( L ‘ 𝐴 ) ) ) |
| 21 |
19 20
|
oveq12d |
⊢ ( 𝑛 = ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) → ( ( 𝑛 “ ( R ‘ 𝐴 ) ) |s ( 𝑛 “ ( L ‘ 𝐴 ) ) ) = ( ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( R ‘ 𝐴 ) ) |s ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( L ‘ 𝐴 ) ) ) ) |
| 22 |
|
eqid |
⊢ ( 𝑥 ∈ V , 𝑛 ∈ V ↦ ( ( 𝑛 “ ( R ‘ 𝑥 ) ) |s ( 𝑛 “ ( L ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ V , 𝑛 ∈ V ↦ ( ( 𝑛 “ ( R ‘ 𝑥 ) ) |s ( 𝑛 “ ( L ‘ 𝑥 ) ) ) ) |
| 23 |
18 21 22
|
ovmpog |
⊢ ( ( 𝐴 ∈ V ∧ ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) ∈ V ∧ ( ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( R ‘ 𝐴 ) ) |s ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( L ‘ 𝐴 ) ) ) ∈ V ) → ( 𝐴 ( 𝑥 ∈ V , 𝑛 ∈ V ↦ ( ( 𝑛 “ ( R ‘ 𝑥 ) ) |s ( 𝑛 “ ( L ‘ 𝑥 ) ) ) ) ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) ) = ( ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( R ‘ 𝐴 ) ) |s ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( L ‘ 𝐴 ) ) ) ) |
| 24 |
3 12 13 23
|
syl3anc |
⊢ ( 𝐴 ∈ No → ( 𝐴 ( 𝑥 ∈ V , 𝑛 ∈ V ↦ ( ( 𝑛 “ ( R ‘ 𝑥 ) ) |s ( 𝑛 “ ( L ‘ 𝑥 ) ) ) ) ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) ) = ( ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( R ‘ 𝐴 ) ) |s ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( L ‘ 𝐴 ) ) ) ) |
| 25 |
|
ssun2 |
⊢ ( R ‘ 𝐴 ) ⊆ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) |
| 26 |
|
resima2 |
⊢ ( ( R ‘ 𝐴 ) ⊆ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) → ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( R ‘ 𝐴 ) ) = ( -us “ ( R ‘ 𝐴 ) ) ) |
| 27 |
25 26
|
ax-mp |
⊢ ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( R ‘ 𝐴 ) ) = ( -us “ ( R ‘ 𝐴 ) ) |
| 28 |
|
ssun1 |
⊢ ( L ‘ 𝐴 ) ⊆ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) |
| 29 |
|
resima2 |
⊢ ( ( L ‘ 𝐴 ) ⊆ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) → ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( L ‘ 𝐴 ) ) = ( -us “ ( L ‘ 𝐴 ) ) ) |
| 30 |
28 29
|
ax-mp |
⊢ ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( L ‘ 𝐴 ) ) = ( -us “ ( L ‘ 𝐴 ) ) |
| 31 |
27 30
|
oveq12i |
⊢ ( ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( R ‘ 𝐴 ) ) |s ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( L ‘ 𝐴 ) ) ) = ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) |
| 32 |
31
|
a1i |
⊢ ( 𝐴 ∈ No → ( ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( R ‘ 𝐴 ) ) |s ( ( -us ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) “ ( L ‘ 𝐴 ) ) ) = ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) ) |
| 33 |
2 24 32
|
3eqtrd |
⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) = ( ( -us “ ( R ‘ 𝐴 ) ) |s ( -us “ ( L ‘ 𝐴 ) ) ) ) |