Description: Surreal negation in terms of subtraction. (Contributed by Scott Fenton, 15-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | negsval2 | ⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) = ( 0s -s 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sno | ⊢ 0s ∈ No | |
2 | subsval | ⊢ ( ( 0s ∈ No ∧ 𝐴 ∈ No ) → ( 0s -s 𝐴 ) = ( 0s +s ( -us ‘ 𝐴 ) ) ) | |
3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ No → ( 0s -s 𝐴 ) = ( 0s +s ( -us ‘ 𝐴 ) ) ) |
4 | negscl | ⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) ∈ No ) | |
5 | addslid | ⊢ ( ( -us ‘ 𝐴 ) ∈ No → ( 0s +s ( -us ‘ 𝐴 ) ) = ( -us ‘ 𝐴 ) ) | |
6 | 4 5 | syl | ⊢ ( 𝐴 ∈ No → ( 0s +s ( -us ‘ 𝐴 ) ) = ( -us ‘ 𝐴 ) ) |
7 | 3 6 | eqtr2d | ⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) = ( 0s -s 𝐴 ) ) |