Description: Surreal negation in terms of subtraction. (Contributed by Scott Fenton, 15-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | negsval2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
Assertion | negsval2d | ⊢ ( 𝜑 → ( -us ‘ 𝐴 ) = ( 0s -s 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negsval2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
2 | negsval2 | ⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) = ( 0s -s 𝐴 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → ( -us ‘ 𝐴 ) = ( 0s -s 𝐴 ) ) |