Step |
Hyp |
Ref |
Expression |
1 |
|
nehash2.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝑉 ) |
2 |
|
nehash2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
3 |
|
nehash2.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
4 |
|
nehash2.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
5 |
|
hashprg |
⊢ ( ( 𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃 ) → ( 𝐴 ≠ 𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
6 |
2 3 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
7 |
4 6
|
mpbid |
⊢ ( 𝜑 → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
8 |
2 3
|
prssd |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ⊆ 𝑃 ) |
9 |
|
hashss |
⊢ ( ( 𝑃 ∈ 𝑉 ∧ { 𝐴 , 𝐵 } ⊆ 𝑃 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ ( ♯ ‘ 𝑃 ) ) |
10 |
1 8 9
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ ( ♯ ‘ 𝑃 ) ) |
11 |
7 10
|
eqbrtrrd |
⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ 𝑃 ) ) |