Metamath Proof Explorer


Theorem nehash2

Description: The cardinality of a set with two distinct elements. (Contributed by Thierry Arnoux, 27-Aug-2019)

Ref Expression
Hypotheses nehash2.p ( 𝜑𝑃𝑉 )
nehash2.a ( 𝜑𝐴𝑃 )
nehash2.b ( 𝜑𝐵𝑃 )
nehash2.1 ( 𝜑𝐴𝐵 )
Assertion nehash2 ( 𝜑 → 2 ≤ ( ♯ ‘ 𝑃 ) )

Proof

Step Hyp Ref Expression
1 nehash2.p ( 𝜑𝑃𝑉 )
2 nehash2.a ( 𝜑𝐴𝑃 )
3 nehash2.b ( 𝜑𝐵𝑃 )
4 nehash2.1 ( 𝜑𝐴𝐵 )
5 hashprg ( ( 𝐴𝑃𝐵𝑃 ) → ( 𝐴𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) )
6 2 3 5 syl2anc ( 𝜑 → ( 𝐴𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) )
7 4 6 mpbid ( 𝜑 → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 )
8 2 3 prssd ( 𝜑 → { 𝐴 , 𝐵 } ⊆ 𝑃 )
9 hashss ( ( 𝑃𝑉 ∧ { 𝐴 , 𝐵 } ⊆ 𝑃 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ ( ♯ ‘ 𝑃 ) )
10 1 8 9 syl2anc ( 𝜑 → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ ( ♯ ‘ 𝑃 ) )
11 7 10 eqbrtrrd ( 𝜑 → 2 ≤ ( ♯ ‘ 𝑃 ) )