| Step |
Hyp |
Ref |
Expression |
| 1 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 3 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐽 ∈ Top ) |
| 5 |
|
simpr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ 𝑋 ) |
| 6 |
5 2
|
sseqtrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 7 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 8 |
7
|
neiuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ∪ 𝐽 = ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 9 |
4 6 8
|
syl2anc |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ∪ 𝐽 = ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 10 |
2 9
|
eqtrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑋 = ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 11 |
|
eqimss2 |
⊢ ( 𝑋 = ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 13 |
|
sspwuni |
⊢ ( ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝒫 𝑋 ↔ ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 14 |
12 13
|
sylibr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝒫 𝑋 ) |
| 15 |
14
|
3adant3 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝒫 𝑋 ) |
| 16 |
|
0nnei |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ≠ ∅ ) → ¬ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 17 |
3 16
|
sylan |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ≠ ∅ ) → ¬ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 18 |
17
|
3adant2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ¬ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 19 |
7
|
tpnei |
⊢ ( 𝐽 ∈ Top → ( 𝑆 ⊆ ∪ 𝐽 ↔ ∪ 𝐽 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 20 |
19
|
biimpa |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ∪ 𝐽 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 21 |
4 6 20
|
syl2anc |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ∪ 𝐽 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 22 |
2 21
|
eqeltrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 23 |
22
|
3adant3 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 24 |
15 18 23
|
3jca |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ( ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 25 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) |
| 26 |
4
|
ad2antrr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝐽 ∈ Top ) |
| 27 |
|
simprl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 28 |
|
simprr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ⊆ 𝑥 ) |
| 29 |
|
simplr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ⊆ 𝑋 ) |
| 30 |
2
|
ad2antrr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑋 = ∪ 𝐽 ) |
| 31 |
29 30
|
sseqtrd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ⊆ ∪ 𝐽 ) |
| 32 |
7
|
ssnei2 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑦 ⊆ 𝑥 ∧ 𝑥 ⊆ ∪ 𝐽 ) ) → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 33 |
26 27 28 31 32
|
syl22anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 34 |
33
|
rexlimdvaa |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 35 |
25 34
|
sylan2 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → ( ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 36 |
35
|
ralrimiva |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 37 |
36
|
3adant3 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 38 |
|
innei |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 39 |
38
|
3expib |
⊢ ( 𝐽 ∈ Top → ( ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 40 |
3 39
|
syl |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 41 |
40
|
3ad2ant1 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ( ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 42 |
41
|
ralrimivv |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ∀ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ∩ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 43 |
|
isfil2 |
⊢ ( ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Fil ‘ 𝑋 ) ↔ ( ( ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ∩ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 44 |
24 37 42 43
|
syl3anbrc |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Fil ‘ 𝑋 ) ) |