| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssid | ⊢ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ⊆  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) | 
						
							| 2 | 1 | jctr | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝐴  ∈  𝑋  ∧  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ⊆  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  ∈  𝑋  ∧  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ⊆  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 5 |  | snssi | ⊢ ( 𝐴  ∈  𝑋  →  { 𝐴 }  ⊆  𝑋 ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  { 𝐴 }  ⊆  𝑋 ) | 
						
							| 7 |  | snnzg | ⊢ ( 𝐴  ∈  𝑋  →  { 𝐴 }  ≠  ∅ ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  { 𝐴 }  ≠  ∅ ) | 
						
							| 9 |  | neifil | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  { 𝐴 }  ⊆  𝑋  ∧  { 𝐴 }  ≠  ∅ )  →  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 10 | 4 6 8 9 | syl3anc | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 11 |  | elflim | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝐴  ∈  ( 𝐽  fLim  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ↔  ( 𝐴  ∈  𝑋  ∧  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ⊆  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) | 
						
							| 12 | 10 11 | syldan | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  ∈  ( 𝐽  fLim  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  ↔  ( 𝐴  ∈  𝑋  ∧  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ⊆  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) | 
						
							| 13 | 3 12 | mpbird | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  ( 𝐽  fLim  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |