Metamath Proof Explorer


Theorem neii1

Description: A neighborhood is included in the topology's base set. (Contributed by NM, 12-Feb-2007)

Ref Expression
Hypothesis neifval.1 𝑋 = 𝐽
Assertion neii1 ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑁𝑋 )

Proof

Step Hyp Ref Expression
1 neifval.1 𝑋 = 𝐽
2 1 neiss2 ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆𝑋 )
3 1 isnei ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑁𝑋 ∧ ∃ 𝑔𝐽 ( 𝑆𝑔𝑔𝑁 ) ) ) )
4 simpl ( ( 𝑁𝑋 ∧ ∃ 𝑔𝐽 ( 𝑆𝑔𝑔𝑁 ) ) → 𝑁𝑋 )
5 3 4 syl6bi ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑁𝑋 ) )
6 5 impancom ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑆𝑋𝑁𝑋 ) )
7 2 6 mpd ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑁𝑋 )