Step |
Hyp |
Ref |
Expression |
1 |
|
neipcfilu.x |
⊢ 𝑋 = ( Base ‘ 𝑊 ) |
2 |
|
neipcfilu.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
3 |
|
neipcfilu.u |
⊢ 𝑈 = ( UnifSt ‘ 𝑊 ) |
4 |
|
simp2 |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → 𝑊 ∈ TopSp ) |
5 |
1 2
|
istps |
⊢ ( 𝑊 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
6 |
4 5
|
sylib |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
7 |
|
simp3 |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → 𝑃 ∈ 𝑋 ) |
8 |
7
|
snssd |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → { 𝑃 } ⊆ 𝑋 ) |
9 |
7
|
snn0d |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → { 𝑃 } ≠ ∅ ) |
10 |
|
neifil |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ { 𝑃 } ⊆ 𝑋 ∧ { 𝑃 } ≠ ∅ ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( Fil ‘ 𝑋 ) ) |
11 |
6 8 9 10
|
syl3anc |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( Fil ‘ 𝑋 ) ) |
12 |
|
filfbas |
⊢ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( Fil ‘ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( fBas ‘ 𝑋 ) ) |
13 |
11 12
|
syl |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( fBas ‘ 𝑋 ) ) |
14 |
|
eqid |
⊢ ( 𝑤 “ { 𝑃 } ) = ( 𝑤 “ { 𝑃 } ) |
15 |
|
imaeq1 |
⊢ ( 𝑣 = 𝑤 → ( 𝑣 “ { 𝑃 } ) = ( 𝑤 “ { 𝑃 } ) ) |
16 |
15
|
rspceeqv |
⊢ ( ( 𝑤 ∈ 𝑈 ∧ ( 𝑤 “ { 𝑃 } ) = ( 𝑤 “ { 𝑃 } ) ) → ∃ 𝑣 ∈ 𝑈 ( 𝑤 “ { 𝑃 } ) = ( 𝑣 “ { 𝑃 } ) ) |
17 |
14 16
|
mpan2 |
⊢ ( 𝑤 ∈ 𝑈 → ∃ 𝑣 ∈ 𝑈 ( 𝑤 “ { 𝑃 } ) = ( 𝑣 “ { 𝑃 } ) ) |
18 |
|
vex |
⊢ 𝑤 ∈ V |
19 |
18
|
imaex |
⊢ ( 𝑤 “ { 𝑃 } ) ∈ V |
20 |
|
eqid |
⊢ ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) = ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) |
21 |
20
|
elrnmpt |
⊢ ( ( 𝑤 “ { 𝑃 } ) ∈ V → ( ( 𝑤 “ { 𝑃 } ) ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ↔ ∃ 𝑣 ∈ 𝑈 ( 𝑤 “ { 𝑃 } ) = ( 𝑣 “ { 𝑃 } ) ) ) |
22 |
19 21
|
ax-mp |
⊢ ( ( 𝑤 “ { 𝑃 } ) ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ↔ ∃ 𝑣 ∈ 𝑈 ( 𝑤 “ { 𝑃 } ) = ( 𝑣 “ { 𝑃 } ) ) |
23 |
17 22
|
sylibr |
⊢ ( 𝑤 ∈ 𝑈 → ( 𝑤 “ { 𝑃 } ) ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
24 |
23
|
ad2antlr |
⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → ( 𝑤 “ { 𝑃 } ) ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
25 |
1 3 2
|
isusp |
⊢ ( 𝑊 ∈ UnifSp ↔ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐽 = ( unifTop ‘ 𝑈 ) ) ) |
26 |
25
|
simplbi |
⊢ ( 𝑊 ∈ UnifSp → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
27 |
26
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
28 |
|
eqid |
⊢ ( unifTop ‘ 𝑈 ) = ( unifTop ‘ 𝑈 ) |
29 |
28
|
utopsnneip |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ ( unifTop ‘ 𝑈 ) ) ‘ { 𝑃 } ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
30 |
27 7 29
|
syl2anc |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ ( unifTop ‘ 𝑈 ) ) ‘ { 𝑃 } ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
31 |
30
|
eleq2d |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝑤 “ { 𝑃 } ) ∈ ( ( nei ‘ ( unifTop ‘ 𝑈 ) ) ‘ { 𝑃 } ) ↔ ( 𝑤 “ { 𝑃 } ) ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) ) |
32 |
31
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → ( ( 𝑤 “ { 𝑃 } ) ∈ ( ( nei ‘ ( unifTop ‘ 𝑈 ) ) ‘ { 𝑃 } ) ↔ ( 𝑤 “ { 𝑃 } ) ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) ) |
33 |
24 32
|
mpbird |
⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → ( 𝑤 “ { 𝑃 } ) ∈ ( ( nei ‘ ( unifTop ‘ 𝑈 ) ) ‘ { 𝑃 } ) ) |
34 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈 ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) ) → 𝑊 ∈ UnifSp ) |
35 |
34
|
3anassrs |
⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → 𝑊 ∈ UnifSp ) |
36 |
25
|
simprbi |
⊢ ( 𝑊 ∈ UnifSp → 𝐽 = ( unifTop ‘ 𝑈 ) ) |
37 |
35 36
|
syl |
⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → 𝐽 = ( unifTop ‘ 𝑈 ) ) |
38 |
37
|
fveq2d |
⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → ( nei ‘ 𝐽 ) = ( nei ‘ ( unifTop ‘ 𝑈 ) ) ) |
39 |
38
|
fveq1d |
⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) = ( ( nei ‘ ( unifTop ‘ 𝑈 ) ) ‘ { 𝑃 } ) ) |
40 |
33 39
|
eleqtrrd |
⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → ( 𝑤 “ { 𝑃 } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) |
41 |
|
simpr |
⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) |
42 |
|
id |
⊢ ( 𝑎 = ( 𝑤 “ { 𝑃 } ) → 𝑎 = ( 𝑤 “ { 𝑃 } ) ) |
43 |
42
|
sqxpeqd |
⊢ ( 𝑎 = ( 𝑤 “ { 𝑃 } ) → ( 𝑎 × 𝑎 ) = ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ) |
44 |
43
|
sseq1d |
⊢ ( 𝑎 = ( 𝑤 “ { 𝑃 } ) → ( ( 𝑎 × 𝑎 ) ⊆ 𝑣 ↔ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) ) |
45 |
44
|
rspcev |
⊢ ( ( ( 𝑤 “ { 𝑃 } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → ∃ 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
46 |
40 41 45
|
syl2anc |
⊢ ( ( ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) → ∃ 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
47 |
27
|
adantr |
⊢ ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
48 |
7
|
adantr |
⊢ ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑃 ∈ 𝑋 ) |
49 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑣 ∈ 𝑈 ) |
50 |
|
simpll1 |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
51 |
|
simplr |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) → 𝑢 ∈ 𝑈 ) |
52 |
|
ustexsym |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) |
53 |
50 51 52
|
syl2anc |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) |
54 |
50
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
55 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → 𝑤 ∈ 𝑈 ) |
56 |
|
ustssxp |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) → 𝑤 ⊆ ( 𝑋 × 𝑋 ) ) |
57 |
54 55 56
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → 𝑤 ⊆ ( 𝑋 × 𝑋 ) ) |
58 |
|
simpll2 |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ∧ 𝑤 ∈ 𝑈 ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) ) → 𝑃 ∈ 𝑋 ) |
59 |
58
|
3anassrs |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → 𝑃 ∈ 𝑋 ) |
60 |
|
ustneism |
⊢ ( ( 𝑤 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ ( 𝑤 ∘ ◡ 𝑤 ) ) |
61 |
57 59 60
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ ( 𝑤 ∘ ◡ 𝑤 ) ) |
62 |
|
simprl |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → ◡ 𝑤 = 𝑤 ) |
63 |
62
|
coeq2d |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → ( 𝑤 ∘ ◡ 𝑤 ) = ( 𝑤 ∘ 𝑤 ) ) |
64 |
|
coss1 |
⊢ ( 𝑤 ⊆ 𝑢 → ( 𝑤 ∘ 𝑤 ) ⊆ ( 𝑢 ∘ 𝑤 ) ) |
65 |
|
coss2 |
⊢ ( 𝑤 ⊆ 𝑢 → ( 𝑢 ∘ 𝑤 ) ⊆ ( 𝑢 ∘ 𝑢 ) ) |
66 |
64 65
|
sstrd |
⊢ ( 𝑤 ⊆ 𝑢 → ( 𝑤 ∘ 𝑤 ) ⊆ ( 𝑢 ∘ 𝑢 ) ) |
67 |
66
|
ad2antll |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → ( 𝑤 ∘ 𝑤 ) ⊆ ( 𝑢 ∘ 𝑢 ) ) |
68 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) |
69 |
67 68
|
sstrd |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) |
70 |
63 69
|
eqsstrd |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → ( 𝑤 ∘ ◡ 𝑤 ) ⊆ 𝑣 ) |
71 |
61 70
|
sstrd |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) |
72 |
71
|
ex |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑤 ∈ 𝑈 ) → ( ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) → ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) ) |
73 |
72
|
reximdva |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) → ( ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑢 ) → ∃ 𝑤 ∈ 𝑈 ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) ) |
74 |
53 73
|
mpd |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) → ∃ 𝑤 ∈ 𝑈 ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) |
75 |
|
ustexhalf |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) |
76 |
75
|
3adant2 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 ∘ 𝑢 ) ⊆ 𝑣 ) |
77 |
74 76
|
r19.29a |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) |
78 |
47 48 49 77
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ( 𝑤 “ { 𝑃 } ) × ( 𝑤 “ { 𝑃 } ) ) ⊆ 𝑣 ) |
79 |
46 78
|
r19.29a |
⊢ ( ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
80 |
79
|
ralrimiva |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
81 |
|
iscfilu |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( CauFilu ‘ 𝑈 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) |
82 |
27 81
|
syl |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( CauFilu ‘ 𝑈 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) |
83 |
13 80 82
|
mpbir2and |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( CauFilu ‘ 𝑈 ) ) |