Step |
Hyp |
Ref |
Expression |
1 |
|
neiptop.o |
⊢ 𝐽 = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } |
2 |
|
neiptop.0 |
⊢ ( 𝜑 → 𝑁 : 𝑋 ⟶ 𝒫 𝒫 𝑋 ) |
3 |
|
neiptop.1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) |
4 |
|
neiptop.2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) ⊆ ( 𝑁 ‘ 𝑝 ) ) |
5 |
|
neiptop.3 |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑝 ∈ 𝑎 ) |
6 |
|
neiptop.4 |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) |
7 |
|
neiptop.5 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) |
8 |
1 2 3 4 5 6 7
|
neiptoptop |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
9 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
10 |
8 9
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
11 |
1 2 3 4 5 6 7
|
neiptopuni |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
12 |
11
|
fveq2d |
⊢ ( 𝜑 → ( TopOn ‘ 𝑋 ) = ( TopOn ‘ ∪ 𝐽 ) ) |
13 |
10 12
|
eleqtrrd |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
14 |
1 2 3 4 5 6 7
|
neiptopnei |
⊢ ( 𝜑 → 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ) ) |
15 |
|
nfv |
⊢ Ⅎ 𝑝 ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) |
16 |
|
nfmpt1 |
⊢ Ⅎ 𝑝 ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) |
17 |
16
|
nfeq2 |
⊢ Ⅎ 𝑝 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) |
18 |
15 17
|
nfan |
⊢ Ⅎ 𝑝 ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |
19 |
|
nfv |
⊢ Ⅎ 𝑝 𝑏 ⊆ 𝑋 |
20 |
18 19
|
nfan |
⊢ Ⅎ 𝑝 ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ⊆ 𝑋 ) |
21 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑝 ∈ 𝑏 ) → 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |
22 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ⊆ 𝑋 ) → 𝑏 ⊆ 𝑋 ) |
23 |
22
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑝 ∈ 𝑏 ) → 𝑝 ∈ 𝑋 ) |
24 |
|
id |
⊢ ( 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) → 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |
25 |
|
fvexd |
⊢ ( ( 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ∧ 𝑝 ∈ 𝑋 ) → ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ∈ V ) |
26 |
24 25
|
fvmpt2d |
⊢ ( ( 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑝 ) = ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) |
27 |
21 23 26
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑝 ∈ 𝑏 ) → ( 𝑁 ‘ 𝑝 ) = ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) |
28 |
27
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑝 ∈ 𝑏 ) → ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) = ( 𝑁 ‘ 𝑝 ) ) |
29 |
28
|
eleq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑝 ∈ 𝑏 ) → ( 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ↔ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
30 |
20 29
|
ralbida |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ⊆ 𝑋 ) → ( ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ↔ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
31 |
30
|
pm5.32da |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) → ( ( 𝑏 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ↔ ( 𝑏 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ) ) |
32 |
|
toponss |
⊢ ( ( 𝑗 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑏 ∈ 𝑗 ) → 𝑏 ⊆ 𝑋 ) |
33 |
32
|
ad4ant24 |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ∈ 𝑗 ) → 𝑏 ⊆ 𝑋 ) |
34 |
|
topontop |
⊢ ( 𝑗 ∈ ( TopOn ‘ 𝑋 ) → 𝑗 ∈ Top ) |
35 |
34
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) → 𝑗 ∈ Top ) |
36 |
|
opnnei |
⊢ ( 𝑗 ∈ Top → ( 𝑏 ∈ 𝑗 ↔ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |
37 |
35 36
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) → ( 𝑏 ∈ 𝑗 ↔ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |
38 |
37
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ∈ 𝑗 ) → ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) |
39 |
33 38
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ∈ 𝑗 ) → ( 𝑏 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |
40 |
37
|
biimpar |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) → 𝑏 ∈ 𝑗 ) |
41 |
40
|
adantrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ ( 𝑏 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) → 𝑏 ∈ 𝑗 ) |
42 |
39 41
|
impbida |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) → ( 𝑏 ∈ 𝑗 ↔ ( 𝑏 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ) |
43 |
1
|
neipeltop |
⊢ ( 𝑏 ∈ 𝐽 ↔ ( 𝑏 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
44 |
43
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) → ( 𝑏 ∈ 𝐽 ↔ ( 𝑏 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ) ) |
45 |
31 42 44
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) → ( 𝑏 ∈ 𝑗 ↔ 𝑏 ∈ 𝐽 ) ) |
46 |
45
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) → 𝑗 = 𝐽 ) |
47 |
46
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) → 𝑗 = 𝐽 ) ) |
48 |
47
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ( 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) → 𝑗 = 𝐽 ) ) |
49 |
|
simpl |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋 ) → 𝑗 = 𝐽 ) |
50 |
49
|
fveq2d |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋 ) → ( nei ‘ 𝑗 ) = ( nei ‘ 𝐽 ) ) |
51 |
50
|
fveq1d |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋 ) → ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ) |
52 |
51
|
mpteq2dva |
⊢ ( 𝑗 = 𝐽 → ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ) ) |
53 |
52
|
eqeq2d |
⊢ ( 𝑗 = 𝐽 → ( 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ↔ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ) ) ) |
54 |
53
|
eqreu |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ) ∧ ∀ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ( 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) → 𝑗 = 𝐽 ) ) → ∃! 𝑗 ∈ ( TopOn ‘ 𝑋 ) 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |
55 |
13 14 48 54
|
syl3anc |
⊢ ( 𝜑 → ∃! 𝑗 ∈ ( TopOn ‘ 𝑋 ) 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |