Metamath Proof Explorer


Theorem neiuni

Description: The union of the neighborhoods of a set equals the topology's underlying set. (Contributed by FL, 18-Sep-2007) (Revised by Mario Carneiro, 9-Apr-2015)

Ref Expression
Hypothesis tpnei.1 𝑋 = 𝐽
Assertion neiuni ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → 𝑋 = ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 tpnei.1 𝑋 = 𝐽
2 1 tpnei ( 𝐽 ∈ Top → ( 𝑆𝑋𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) )
3 2 biimpa ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) )
4 elssuni ( 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑋 ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) )
5 3 4 syl ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → 𝑋 ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) )
6 1 neii1 ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑥𝑋 )
7 6 ex ( 𝐽 ∈ Top → ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑥𝑋 ) )
8 7 adantr ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑥𝑋 ) )
9 8 ralrimiv ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ∀ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝑥𝑋 )
10 unissb ( ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ↔ ∀ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝑥𝑋 )
11 9 10 sylibr ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 )
12 5 11 eqssd ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → 𝑋 = ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) )