| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tpnei.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 | 1 | tpnei | ⊢ ( 𝐽  ∈  Top  →  ( 𝑆  ⊆  𝑋  ↔  𝑋  ∈  ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) | 
						
							| 3 | 2 | biimpa | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  𝑋  ∈  ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) | 
						
							| 4 |  | elssuni | ⊢ ( 𝑋  ∈  ( ( nei ‘ 𝐽 ) ‘ 𝑆 )  →  𝑋  ⊆  ∪  ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  𝑋  ⊆  ∪  ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) | 
						
							| 6 | 1 | neii1 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) )  →  𝑥  ⊆  𝑋 ) | 
						
							| 7 | 6 | ex | ⊢ ( 𝐽  ∈  Top  →  ( 𝑥  ∈  ( ( nei ‘ 𝐽 ) ‘ 𝑆 )  →  𝑥  ⊆  𝑋 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑥  ∈  ( ( nei ‘ 𝐽 ) ‘ 𝑆 )  →  𝑥  ⊆  𝑋 ) ) | 
						
							| 9 | 8 | ralrimiv | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  ∀ 𝑥  ∈  ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝑥  ⊆  𝑋 ) | 
						
							| 10 |  | unissb | ⊢ ( ∪  ( ( nei ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑋  ↔  ∀ 𝑥  ∈  ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝑥  ⊆  𝑋 ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  ∪  ( ( nei ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑋 ) | 
						
							| 12 | 5 11 | eqssd | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  𝑋  =  ∪  ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |