Metamath Proof Explorer


Theorem nel1nelin

Description: Membership in an intersection implies membership in the first set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion nel1nelin ( ¬ 𝐴𝐵 → ¬ 𝐴 ∈ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 elinel1 ( 𝐴 ∈ ( 𝐵𝐶 ) → 𝐴𝐵 )
2 1 con3i ( ¬ 𝐴𝐵 → ¬ 𝐴 ∈ ( 𝐵𝐶 ) )