Metamath Proof Explorer


Theorem nel2nelin

Description: Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion nel2nelin ( ¬ 𝐴𝐶 → ¬ 𝐴 ∈ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 elinel2 ( 𝐴 ∈ ( 𝐵𝐶 ) → 𝐴𝐶 )
2 1 con3i ( ¬ 𝐴𝐶 → ¬ 𝐴 ∈ ( 𝐵𝐶 ) )