Description: Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | nel2nelin | ⊢ ( ¬ 𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel2 | ⊢ ( 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) → 𝐴 ∈ 𝐶 ) | |
2 | 1 | con3i | ⊢ ( ¬ 𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) ) |