Metamath Proof Explorer


Theorem nel2nelini

Description: Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis nel2nelini.1 ¬ 𝐴𝐶
Assertion nel2nelini ¬ 𝐴 ∈ ( 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 nel2nelini.1 ¬ 𝐴𝐶
2 nel2nelin ( ¬ 𝐴𝐶 → ¬ 𝐴 ∈ ( 𝐵𝐶 ) )
3 1 2 ax-mp ¬ 𝐴 ∈ ( 𝐵𝐶 )