Description: Contrapositive law deduction for negated membership. (Contributed by AV, 28-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nelcon3d.1 | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝐵 → 𝐶 ∈ 𝐷 ) ) | |
Assertion | nelcon3d | ⊢ ( 𝜑 → ( 𝐶 ∉ 𝐷 → 𝐴 ∉ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelcon3d.1 | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝐵 → 𝐶 ∈ 𝐷 ) ) | |
2 | 1 | con3d | ⊢ ( 𝜑 → ( ¬ 𝐶 ∈ 𝐷 → ¬ 𝐴 ∈ 𝐵 ) ) |
3 | df-nel | ⊢ ( 𝐶 ∉ 𝐷 ↔ ¬ 𝐶 ∈ 𝐷 ) | |
4 | df-nel | ⊢ ( 𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵 ) | |
5 | 2 3 4 | 3imtr4g | ⊢ ( 𝜑 → ( 𝐶 ∉ 𝐷 → 𝐴 ∉ 𝐵 ) ) |