Metamath Proof Explorer


Theorem nelcon3d

Description: Contrapositive law deduction for negated membership. (Contributed by AV, 28-Jan-2020)

Ref Expression
Hypothesis nelcon3d.1 ( 𝜑 → ( 𝐴𝐵𝐶𝐷 ) )
Assertion nelcon3d ( 𝜑 → ( 𝐶𝐷𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 nelcon3d.1 ( 𝜑 → ( 𝐴𝐵𝐶𝐷 ) )
2 1 con3d ( 𝜑 → ( ¬ 𝐶𝐷 → ¬ 𝐴𝐵 ) )
3 df-nel ( 𝐶𝐷 ↔ ¬ 𝐶𝐷 )
4 df-nel ( 𝐴𝐵 ↔ ¬ 𝐴𝐵 )
5 2 3 4 3imtr4g ( 𝜑 → ( 𝐶𝐷𝐴𝐵 ) )