Description: Implication of membership in a class difference. (Contributed by NM, 28-Jun-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | neldif | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) ) → 𝐴 ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ) | |
2 | 1 | simplbi2 | ⊢ ( 𝐴 ∈ 𝐵 → ( ¬ 𝐴 ∈ 𝐶 → 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) ) ) |
3 | 2 | con1d | ⊢ ( 𝐴 ∈ 𝐵 → ( ¬ 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |
4 | 3 | imp | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) ) → 𝐴 ∈ 𝐶 ) |