Metamath Proof Explorer


Theorem neldif

Description: Implication of membership in a class difference. (Contributed by NM, 28-Jun-1994)

Ref Expression
Assertion neldif ( ( 𝐴𝐵 ∧ ¬ 𝐴 ∈ ( 𝐵𝐶 ) ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eldif ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) )
2 1 simplbi2 ( 𝐴𝐵 → ( ¬ 𝐴𝐶𝐴 ∈ ( 𝐵𝐶 ) ) )
3 2 con1d ( 𝐴𝐵 → ( ¬ 𝐴 ∈ ( 𝐵𝐶 ) → 𝐴𝐶 ) )
4 3 imp ( ( 𝐴𝐵 ∧ ¬ 𝐴 ∈ ( 𝐵𝐶 ) ) → 𝐴𝐶 )