Metamath Proof Explorer


Theorem neldifpr1

Description: The first element of a pair is not an element of a difference with this pair. (Contributed by Thierry Arnoux, 20-Nov-2023)

Ref Expression
Assertion neldifpr1 ¬ 𝐴 ∈ ( 𝐶 ∖ { 𝐴 , 𝐵 } )

Proof

Step Hyp Ref Expression
1 neirr ¬ 𝐴𝐴
2 eldifpr ( 𝐴 ∈ ( 𝐶 ∖ { 𝐴 , 𝐵 } ) ↔ ( 𝐴𝐶𝐴𝐴𝐴𝐵 ) )
3 2 simp2bi ( 𝐴 ∈ ( 𝐶 ∖ { 𝐴 , 𝐵 } ) → 𝐴𝐴 )
4 1 3 mto ¬ 𝐴 ∈ ( 𝐶 ∖ { 𝐴 , 𝐵 } )