Metamath Proof Explorer


Theorem neldifpr2

Description: The second element of a pair is not an element of a difference with this pair. (Contributed by Thierry Arnoux, 20-Nov-2023)

Ref Expression
Assertion neldifpr2 ¬ 𝐵 ∈ ( 𝐶 ∖ { 𝐴 , 𝐵 } )

Proof

Step Hyp Ref Expression
1 neirr ¬ 𝐵𝐵
2 eldifpr ( 𝐵 ∈ ( 𝐶 ∖ { 𝐴 , 𝐵 } ) ↔ ( 𝐵𝐶𝐵𝐴𝐵𝐵 ) )
3 2 simp3bi ( 𝐵 ∈ ( 𝐶 ∖ { 𝐴 , 𝐵 } ) → 𝐵𝐵 )
4 1 3 mto ¬ 𝐵 ∈ ( 𝐶 ∖ { 𝐴 , 𝐵 } )