Description: The second element of a pair is not an element of a difference with this pair. (Contributed by Thierry Arnoux, 20-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | neldifpr2 | ⊢ ¬ 𝐵 ∈ ( 𝐶 ∖ { 𝐴 , 𝐵 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr | ⊢ ¬ 𝐵 ≠ 𝐵 | |
2 | eldifpr | ⊢ ( 𝐵 ∈ ( 𝐶 ∖ { 𝐴 , 𝐵 } ) ↔ ( 𝐵 ∈ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐵 ≠ 𝐵 ) ) | |
3 | 2 | simp3bi | ⊢ ( 𝐵 ∈ ( 𝐶 ∖ { 𝐴 , 𝐵 } ) → 𝐵 ≠ 𝐵 ) |
4 | 1 3 | mto | ⊢ ¬ 𝐵 ∈ ( 𝐶 ∖ { 𝐴 , 𝐵 } ) |