Metamath Proof Explorer


Theorem neldifsnd

Description: The class A is not in ( B \ { A } ) . Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Assertion neldifsnd ( 𝜑 → ¬ 𝐴 ∈ ( 𝐵 ∖ { 𝐴 } ) )

Proof

Step Hyp Ref Expression
1 neldifsn ¬ 𝐴 ∈ ( 𝐵 ∖ { 𝐴 } )
2 1 a1i ( 𝜑 → ¬ 𝐴 ∈ ( 𝐵 ∖ { 𝐴 } ) )