Metamath Proof Explorer
Description: Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016) (Proof shortened by Wolf Lammen, 25-Nov-2019)
|
|
Ref |
Expression |
|
Hypotheses |
neleq12d.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
|
neleq12d.2 |
⊢ ( 𝜑 → 𝐶 = 𝐷 ) |
|
Assertion |
neleq12d |
⊢ ( 𝜑 → ( 𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neleq12d.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| 2 |
|
neleq12d.2 |
⊢ ( 𝜑 → 𝐶 = 𝐷 ) |
| 3 |
1 2
|
eleq12d |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷 ) ) |
| 4 |
3
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝐴 ∈ 𝐶 ↔ ¬ 𝐵 ∈ 𝐷 ) ) |
| 5 |
|
df-nel |
⊢ ( 𝐴 ∉ 𝐶 ↔ ¬ 𝐴 ∈ 𝐶 ) |
| 6 |
|
df-nel |
⊢ ( 𝐵 ∉ 𝐷 ↔ ¬ 𝐵 ∈ 𝐷 ) |
| 7 |
4 5 6
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷 ) ) |