Metamath Proof Explorer


Theorem neleq12d

Description: Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016) (Proof shortened by Wolf Lammen, 25-Nov-2019)

Ref Expression
Hypotheses neleq12d.1 ( 𝜑𝐴 = 𝐵 )
neleq12d.2 ( 𝜑𝐶 = 𝐷 )
Assertion neleq12d ( 𝜑 → ( 𝐴𝐶𝐵𝐷 ) )

Proof

Step Hyp Ref Expression
1 neleq12d.1 ( 𝜑𝐴 = 𝐵 )
2 neleq12d.2 ( 𝜑𝐶 = 𝐷 )
3 1 2 eleq12d ( 𝜑 → ( 𝐴𝐶𝐵𝐷 ) )
4 3 notbid ( 𝜑 → ( ¬ 𝐴𝐶 ↔ ¬ 𝐵𝐷 ) )
5 df-nel ( 𝐴𝐶 ↔ ¬ 𝐴𝐶 )
6 df-nel ( 𝐵𝐷 ↔ ¬ 𝐵𝐷 )
7 4 5 6 3bitr4g ( 𝜑 → ( 𝐴𝐶𝐵𝐷 ) )