Metamath Proof Explorer


Theorem neleqtrrd

Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017) (Proof shortened by Wolf Lammen, 13-Nov-2019)

Ref Expression
Hypotheses neleqtrrd.1 ( 𝜑 → ¬ 𝐶𝐵 )
neleqtrrd.2 ( 𝜑𝐴 = 𝐵 )
Assertion neleqtrrd ( 𝜑 → ¬ 𝐶𝐴 )

Proof

Step Hyp Ref Expression
1 neleqtrrd.1 ( 𝜑 → ¬ 𝐶𝐵 )
2 neleqtrrd.2 ( 𝜑𝐴 = 𝐵 )
3 2 eqcomd ( 𝜑𝐵 = 𝐴 )
4 1 3 neleqtrd ( 𝜑 → ¬ 𝐶𝐴 )