Description: A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nelneq | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶 ) → ¬ 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) | |
| 2 | 1 | biimpcd | ⊢ ( 𝐴 ∈ 𝐶 → ( 𝐴 = 𝐵 → 𝐵 ∈ 𝐶 ) ) |
| 3 | 2 | con3dimp | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶 ) → ¬ 𝐴 = 𝐵 ) |