Metamath Proof Explorer


Theorem nelneq

Description: A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997)

Ref Expression
Assertion nelneq ( ( 𝐴𝐶 ∧ ¬ 𝐵𝐶 ) → ¬ 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝐴 = 𝐵 → ( 𝐴𝐶𝐵𝐶 ) )
2 1 biimpcd ( 𝐴𝐶 → ( 𝐴 = 𝐵𝐵𝐶 ) )
3 2 con3dimp ( ( 𝐴𝐶 ∧ ¬ 𝐵𝐶 ) → ¬ 𝐴 = 𝐵 )